AUTHORING SPATIAL MUSIC WITH SPATDIF VERSION 0.4

Jan C. Schacher
Institute for Computer Music
and Sound Technology, ICST
Zurich University of the Arts

Zurich, Switzerland
jan.schacher@zhdk.ch

Nils Peters

ABSTRACT

SpatDIF, the Spatial Sound Description Interchange For-
mat is a light-weight, human-readable syntax for storing
and transmitting spatial sound scenes, serving as an in-
dependent, cross-platform and host-independent solution
for spatial sound composition. The recent update to ver-
sion 0.4 of the specification introduces the ability to define
and store continuous trajectories on the authoring layer in
a human-readable way, as well as describing groups and
source spreading. As a result, SpatDIF provides a new
way to exchange higher level authoring data across author-
ing tools that help to preserve the artistic intent in spatial
music.

1. INTRODUCTION

SpatDIF, the Spatial Sound Description Interchange For-
mat [1,2], is an initiative by musicians and researchers for
the development of an industry-independent, light-weight,
human-readable syntax for storing and transmitting spa-
tial sound scenes. SpatDIF addresses the lack of an inde-
pendent, cross-platform and host-independent solution for
spatial sound composition. It is implementation-agnostic
and not tied to a specific technical platform, program-
ming language or file-format. Representing a high-level
structure that embodies typical authoring and performance
work-flows in spatial sound, it comprises a hierarchical
syntax of descriptors, a set of basic definitions of units
and coordinate dimensions, a number of methods and algo-
rithms for spatial sound transformations, and comes with a
set of best-practice examples in several markup-languages
or network streaming protocols.

This results in a non-synchronous and potentially sparse
description of spatial sound scenes, that is aimed at provid-
ing interoperability between different spatial sound render-
ing tools and spatial music venues. Additionally it serves
as a storage format for archival purposes [3]

The SpatDIF syntax is implemented in a C/C++ soft-
ware library that facilitates the integration in host envi-
ronments [4], for example in MaxMSP and PureData as
3rd party externals, but also in other environments such as

Copyright: © 2016 Jan C. Schacher et al. This is
an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which ermits unre-
/4 14

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

Centre for Interdisciplinary
Research in Music Media
and Technology, CIRMMT
Montreal, Canada
nils.peters@mail.mcgill.ca

Trond Lossius
Bergen Center for
Electronic Arts, BEK
Bergen, Norway
trond.lossius@bek.no

Chikashi Miyama
Institute for Music
and Acoustics, ZKM
Karlsruhe, Germany
miyama@zkm.de

Supercollider [5] and Zirkonium [6], as well as Android
mobile platforms [7].

While integrating SpatDIF into compositional environ-
ments and artistic workflows we realized that artistic inten-
tions of spatial movements are not fully preserved without
an ability to define and store continuous trajectory infor-
mation. We decided to extend SpatDIF accordingly, be-
cause to our knowledge, such features are out of scope of
other open formats tailored towards commercial or broad-
cast applications such as ITU-R BS.2076 [8].

1.1 The Stratified Approach

SpatDIF is a structured system for describing the differ-
ent aspects of a spatial sound workflow where a number of
different aspect come into play. An analysis of a variety of
systems and tools, as well as similarly complex transmis-
sion systems, led to the grouping and organization of the
different processes and tasks into a model that comprises
many, but not all elements of such a work-flow.

In 2009 the authors of [9] proposed a layered model that
describes the relationships and mediation processes be-
tween essential components in sound spatialization. This
model comprises processing layers (see left column of Fig.
1) ranging from the low-level Physical Domain, which
comprises devices that create the acoustical signals, such
as loudspeakers, up to the highest-level description on
the Authoring layer, which describes the organizing and
dynamic processes that drive e.g., movement within the
scene. SpatDIF is based on this model and with the latest
iteration presented in this paper, SpatDIF defines descrip-
tors from the processing layer two up to processing layer
SiX.

The previously published SpatDIF version 0.3 [2, 10]
describes the core elements of a sound scene as well as
some of the lower level rendering and dispatching infor-
mation. The information at that stage was oriented to-
wards rendering of spatial sound content, carrying in a
temporally quantized way the instructions necessary for
the playback-system to trigger sound-files or route audio
signals to sources within the scene and to subsequently po-
sition these source entities in the rendered sound scene.

SpatDIF version 0.3 enables the description of the ap-
pearance and disappearance of sound entities in the scene,
the assignment of media content to the entities, and the
evolution of the geometrical properties of those sound en-
tities in the scene over time such as position changes. This
discretized representation of a sound scene can be practi-

mailto:jan.schacher@zhdk.ch
mailto:nils.peters@mail.mcgill.ca
mailto:trond.lossius@bek.no
mailto:miyama@zkm.de
http://creativecommons.org/licenses/by/3.0/

Processing Layers SpatDIF Core and Extensions Core Functionalities

)

Authoring Trajectory Group

{E} Scene Control Data

==

{A} Audio Data

s Interpolation
ioti CORE Source
5| Scene Description Source Entitiy Spread
S — -
\D 7/ Render Instructions
. Distance- H
4| Encoding Cues General Extensions
(independent of layers)
@ Encoded Audio Stream
A A Pointset Geometry
. Sink Direct-to-One
3| Decoding Entity Speaker
%B B Decoded Audio Stream Automation Shape
2| Hardware Abstraction Ha’g‘a’fre'

-

Physical Devices

Figure 1. Left column: the processing layers and data streams in a spatialization workflow. Middle and right column:
the categorization of SpatDIF extensions. New elements in SpatDIF version 0.4 are highlighted in orange and include the
trajectory and group extensions on the authoring layer, a source-spread extension on the scene description layer, refined

core functionalities, and four new general extensions.

cal for storing or transmitting a finished piece, where all
artistic decisions have been taken and the piece just has to
be rendered. It does not, however, keep any trace of how
these artistic decisions and their manifestation in the scene,
be it in position changes, loudness changes, etc., came to
be. Also, because current discretization methods of trajec-
tories and their perceptual artifacts is an ongoing research
topic (e.g., [11]) and may improve in the future, it is de-
sired to preserve the “master tapes” of sound trajectories
along with their discretized version [12].

In other words, version 0.3 of SpatDIF is a rendering-
centric syntax with a discretized representation of the au-
dio scene.

1.2 SpatDIF Terminology

A SpatDIF representation is the combination of a space
and the actions that are unfolding within it. A scene con-
sists of a number of SpatDIF entities. Entities are all ob-
jects that are affecting or interacting with the sound of that
scene. Entities can be of different kinds e.g., sources or
sinks. Each entity instance is assigned a name, so that it
may be uniquely identified within the scene. The proper-
ties of entities are described and transmitted via SpatDIF
descriptors. A complete SpatDIF statement consists of an
address unambiguously identifying an entity, its descrip-
tor, and its associated value. The values of descriptors
may change over time. All entities and descriptors are
defined within the SpatDIF namespace which consists of
core descriptors, and descriptors organised in extensions
that add functions. Finally, a SpatDIF representation con-
sists of two sections - a meta section and a time section.
The meta section serves to configure and initialize the sys-
tem, while the time section describes the temporal unfold-
ing of a scene.

2. NEW IN SPATDIF VERSION 0.4

To enable the authoring of spatial music with SpatDIF
the new specification version 0.4 [13] extends the scope
of SpatDIF to the sixth processing layer, the authoring
layer. Layer six describes processes that drive changes,
whereas layer five contains a discrete representation of the
resulting state of a scene at specific times. On this sixth
layer, compositional processes that build a sound scene
take place. A vast number of operations or instructions can
be imagined that manipulate sound entities in the scene.
Of these many possible dimensions, the descriptors at this
layer currently address motion.

In combination with the already defined appearance of
source entities, their media assignment and an additional
source-spread factor, a spatial sound composition using
popular spatialization algorithms such as VBAP [14] or
DBAP [15] can be fully represented.

2.1 The Trajectory Extension

The new authoring layer in SpatDIF is defined by the tra-
jectory extension. Applying the trajectory extension to an
entity in the time-section generates a specific spatial mo-
tion in time called trajectory.

A simple example for such a description would be the
following instruction in natural language: “Move source N
from point A to point B by following a straight line over 5
seconds with constant speed.” In technical terms, a trajec-
tory is a result of a combination of the following function-
alities:

e A shape created by a pointset (see Section 2.2) or a
predefined shape template (see Section 2.5).

o Affine geometry transformations to manipulate this
shape (see Section 2.6).

e A spatial interpolation method describing how to
get from point to point (see Section 2.3).

e An automation profile, describing how a trajectory
proceeds in time (see Section 2.4).

These functionalities are addressed in the interpolation
core functionality and in the layer-independent extensions
pointset, geometry, automation, and shape.

Since the pointset extension can serve to predefine tem-
plates and is dependent on the interpolation functionality
to define a shape it can be placed either in the meta or
the time-section. The automation is applied to an entity in
the time-section because it affects the temporal unfolding
in the scene. Both the shape templates and the geometry
transformations are used in the time-section to facilitate the
repeated path-description of a trajectory from templates.

The following extensions may be used independently of
the authoring layer for other purposes.

2.2 The Pointset Extension

A pointset describes a group of geometrical positions or
points. These can be key-points on a path, shape, curve, or
polygon of any kind, but also a collection of entities of the
same kind, such as sink- or speaker-positions.

Points in a pointset can be of two kinds: actual points
(default), i.e., anchors, and helper points, i.e., handles. The
second kind is needed to describe cubic-bezier splines, but
could also serve as reference-points in other functionalities
(see Section 2.3).

2.3 Extended Interpolation Functionality

For the use in trajectories, the core functionality for in-
terpolation were extended. An interpolation defines the
method used for sampling between two defined values
(points/positions).

The interpolation functionality now provides three meth-
ods:

The none method is used to stop a motion, for example
when overwriting pre-existing layer five information.

The linear interpolation is the default method. It can be
carried out in cartesian coordinates to obtain straight lines,
while linear interpolation using polar coordinates leads to
arc motions (this applies to entity positions only, for arc
shaped trajectories, see Section 2.5).

SpatDIF version 0.4 features the newly defined cubic-
bezier interpolation functionality [16] as its principal way
to describe curved paths and automation profiles.

Contrary to other splines, a cubic-bezier curve is defined
by four points; the first and last are the anchors points that
bound the curve, the middle two points (P1, P2) are han-
dles that are used to steer the tension or curvature (see Sec-
tion 2.2). This makes the use of bezier curves unambigu-
ous and has the advantage of generating a fallback polygon
of anchor-points, thus producing a shape that still resem-
bles the original intention. In the case of a multi-segment
cubic-bezier curve, the last and first point of each contigu-
ous segment are shared, thereby reducing the number of
points of the pointset approximately by a quarter [17].

2.4 The Automation Extension

The automation timing function describes how the sam-
pling cursor moves along the path over the duration of
the trajectory. The control points for the functions are
described in two-dimensional relative coordinates of time
over value, abbreviated tv. They range from 0 to 1 and go
from trajectory start to trajectory end in the time relative to
the duration of the motion.

Typical automation movements begin with a slow accel-
eration and end in a deceleration to mimic the physical be-
havior of objects with mass; these time profiles are called
easing curves (see the ease-in-out function in Fig. 2). The
default easing function is linear with constant speed over
the entire path. A number of standard easing functions are
provided that mirror the timing functions of CSS transi-
tions [18].

The addition of multi-segment polygons or cubic-bezier
curves completes the selection of functions and caters to
almost all imaginable curves (bottom of Fig. 2).

By using oscillatory, zig-zag or rectangular shapes in
the automation timing function, motion patterns such as
palindrome looping, jumps and other interesting behaviors
along the trajectory may be produced.

With these three essential general extensions, a trajectory
can now be fully articulated in the time-section. As with
any other element in a typical compositional method, how-
ever, shapes and trajectories want to be re-used and mod-
ified again and again. To avoid having to repeat a shape
definition every time it is applied as an entity’s trajectory,
the capability to pre-define and recall shapes, pointsets and
other elements is crucial. For this purpose two additional
extensions have been defined.

2.5 The Shape Extension

To facilitate describing the most common trajectories,
SpatDIF provides a few basic shape-primitives in the shape
extension. These default shapes are defined with standard-
ized size and orientation (see Fig. 3).

The point primitive serves to stop or fixate a trajectory;
the line, triangle and rectangle primitives provide stan-
dard shapes. The circle primitive consists of a closed
multi-segment cubic-bezier spline with predefined tension
points. Note how the rectangle and circle primitive share
the same anchor points, this serves as a bridge between the
two shapes. The arc primitive is a special case, since it is
defined using only the starting point, angle and radius to
the centre point and the arc angle. This function is mainly
intended for spiraling motions.

The addition of an arbitrary pointset in the shape exten-
sion completes the elements needed to predefine paths or
timing functions in the meta-section.

To reuse shapes within a scene, shape templates can be
stored in the meta section and applied to a trajectory. The
pointset defining the control polygon, as well as the inter-
polation method are thus predefined in a standard size, to
be resized when applied as a trajectory to a specific entity
in the scene. When assigning the shape-template to the en-
tity, the first point of the pointset is attached to the current
position of the entity. The use of the unique name in the

freehand pointset
(spiral)

110

N o-- -
8
ease-in-out
° —0
P2x=0.58,y=10" 1.0
val
— P1x=042,y=0.0 0.0
0.0 time 1.0
freehand pointset °
(Saint Exupéry) -
1.0
pos
0.0
1.0

Figure 2. A trajectory consisting of a 2D spiral path (top)
and two possible automation curves. The path consists of
a pointset with a cubic-bezier interpolation; anchor points
are marked in red, handle points in blue. The first automa-
tion curve is a predefined ease-in-out function smoothly
moving from start to end of the path. The second au-
tomation curve is a free-hand multi-segment pointset with
cubic-bezier interpolation. It moves from the start to the
spiral’s end in a third of the duration with a steep accelera-
tion, then returns gradually to the beginning of the path in
a retrograde motion.

id descriptor allows to reference a standard or pre-defined
shape in the time-section [17].

When applying these shapes to an entity in a trajectory,
the standard geometric properties may be transformed us-
ing the geometry extension (see 2.6).

The same pre-definition and referencing mechanism can
be used for a pointset defining an automation curve.

2.6 The Geometry Extension

When applying a pre-defined shape to a trajectory, the geo-
metric properties, such as size and orientation may need to
be modified. For this purpose affine geometrical transfor-
mations [19] can be applied. The set of transformations in-
cludes scale, translation, rotation, skew and mirror and
can be applied in any combination. Because the results
of such transformation sequence may be order-dependent,
the order of these operations is defined explicitly [17]. A

o
S
NG—MM9 =

1 1
\ @
4 & D 2
LN ‘
3

1.0 0.0 1.0

point line triangle rectangle

! P2
14 2
|
' P1
pointset w/
X cubic-bezier
circle arc pointset interpolation

Figure 3. Predefined shape primitives, an arbitrary poly-
gon, and a cubic-bezier curve based on the pointset.

transformed shape’s first point overwrites the current posi-
tion of an entity in layer five description; the entity position
needs to be updated when storing the file or scene.

2.7 The Group Extension

To affect several entities at the same time the group exten-
sion is introduced on the authoring layer. This functional-
ity can be used to apply the same behavior to a collection
of entities.

This is used for compositional processes where several
voices are conceptually treated as a single unit. An ex-
ample might be a scene in which a vehicle is modeled
that consists of the sounds of the four wheels and the en-
gine placed at the appropriate positions in relation to each
other. In order to displace the vehicle in the scene only the
group’s ‘handle’ is displaced (for example located in the
driver’s seat), and all other sound entities (e.g. the wheels
and the engine) move by maintaining the relative position
to the group (driver) (see top left of Fig. 4).

A SpatDIF group is identified and linked to by its unique
name. The group represents an abstract entity and pos-
sesses the same properties and functionalities as a basic
entity. For instance, it has a reference-point with a po-
sition and orientation, and this point serves as a ‘handle’
point for geometrical operations on the group (see top of
Fig. 4). Groups can be statically defined in the meta sec-
tion and/or dynamically created in the time-section. At the
time of their creation, groups are initially empty. In order
to populate a group, entities need to become members of
a group. They attach by setting the group’s unique name
in their group-membership descriptor. An entity can
only belong to a single group at a time. As long as an en-
tity is attached to a group, the group’s behavior overrides
the member’s behavior with respect to all descriptors that
are explicitly described by the group. As a consequence at-
tempts to change the same properties of single group mem-
bers will be ignored.

When an entity joins a group, the relationship to the
group is established by calculating the entity’s relative
(delta) value to the group’s descriptor value. If a change in
relationship is desired, the entity first needs to be detached
from the group by setting the group-membership to
none, so that it can be addressed individually, and then
reattached to the group with a changed relationship, for

N,
A

translation rotation

1 2 3 4

N s e

grouped entities detached independent movement attached again

Figure 4. The group extension: A group is moved (top left)
or rotated (top right); a group’s member entity detaches
to execute an independent movement, then attaches again
(bottom).

example a shifted position or orientation, gain or spread
factor (see bottom of Fig. 4). At the time of detaching
from a group, the entity keeps the most recent value, in-
cluding any changes that have happened as consequences
of changes to the group’s descriptor values. In other words,
detaching from a group introduces no discontinuities in de-
scriptor values at the fifth layer, unless a new value is set
explicitly.

For descriptors affecting sound, i.e., directly active in do-
main of acoustics, the descriptor’s unit is used to deter-
mine the manner in which to combine the group’s descrip-
tor value with the member-entities’ descriptor value. When
the value of a group’s descriptor is changed, the change
in the member-entities’ descriptor-value happens accord-
ing to a simple rule: If the change is expressed using a
logarithmic unit, the group’s value will be added to the
current value of each member; if the change is expressed
using a linear unit, the group’s value will be multiplied
with the current value of each member. For example, if
the gain-level of a group is increased by 6 dB, this will in-
crease all member-entity gain levels by 6 dB. In contrast,
if the gain change is 2.0 linear units, this will double the
gain levels of all member-entities.

For descriptors affecting the scene geometry, the group
descriptor’s value is added to the descriptor value of each
member (see top of Fig. 4).

Core functionalities and general extensions such as tra-
jectories, affine geometrical transforms, and automations
can be used to change the group’s properties instanta-
neously or over time. These operations can be applied to
the same descriptors and in the same manner as for the
entities contained within the group. As seen already, a
group could be used to control the gain of several enti-
ties, rather than their position or orientation. Or the geo-
metrical transformation could be used to rotate the entire
group around the handle-point, or to shrink or expand the
group by changing the scaling factors, or a combination
thereof [17].

Currently, in SpatDIF v.0.4, the group extension does not
support nested hierarchies, i.e., a group cannot contain an-
other group [20]. Although planned for a future version,
a number of open questions pertaining to the definition of
this functionality still need further research and clarifica-

tion.

As with any of the operations in extensions of the sixth
layer, when modifying the scene, the group behaviors need
to be propagated to the individual member-entities in the
fifth layer description (see Section 3.1).

2.8 The Source Spread Extension

SpatDIF version 0.4 introduces one additional extension
that addresses in a simple and general way the perceived
spatial extent of a source.

Many rendering techniques offers methods for making
the spatial localization of sources less distinct, leading to
the perceptual illusion that the extent of the source spreads
out. In the widely used VBAP-algorithm, for example, a
width factor determines the spreading or smearing of the
source across part of the sound sphere [21]. The planar
DBAP algorithm has a similar blur parameter [15]. In other
more advanced spatialization algorithms, source widening
and diffuseness can be generated using small source mo-
tions around the position [22] or by lowering the spatial
resolution in Ambisonics and other techniques to reduce
directness and generate diffuseness in the sound source
[23,24].

The Source Spread Extension offers a simple and shared
minimal description of the amount of spread, expressed as
a percentage. The different spatial rendering processes will
need to interpret this accordingly, each in relation to its
spatialization principles and abilities. In general a spread
of 0% should be rendered with a spatial localization that is
as precise as the process is able to produce, while a spread
of 100% should result in the sound being rendered in a
manner that is as spread-out and non-localized as the algo-
rithm possible can achieve.

3. DISCUSSION

Currently the descriptors on sixth layer work together with
general extensions to describe source trajectories in the
sound scene as well as the grouping of entities. A few
fundamental rules of how to deal with this new type of
representation need to be discussed.

3.1 Complementary Representations

With the introduction of the sixth layer for authoring in-
structions in SpatDIF version 0.4, events within the un-
folding scene can be represented in two parallel ways; as
layer six trajectories and as a layer five discretized, time-
sampled representation. The two representations are com-
plementary and serve slightly different purposes. The dif-
ference between them is analogues to the difference be-
tween vector-based graphics and bitmap images. Trajec-
tories express processes, relationships and tendencies over
time, and software tools for spatial composition such as
Zirkonium [6] may provide intuitive graphical user inter-
faces for visualization and interaction with the trajectories.
The ability to store trajectory information makes the re-
sulting spatial composition more robust to future transfor-
mations such as geometric or time-related modifications,
as the time-sampled representation can be recalculated to
ensure adequate temporal resolution.

When making use of the trajectory extension, it may seem
tempting to simply replace the layer five representation by
the much more economical trajectory representation. Spat-
DIF requires that the layer five representation is always
present in the resulting description because of the follow-
ing reasons:

Direct use of the trajectory representation for rendering
may impose the heavy burden of continuously interpreting
the trajectories in the scene for every SpatDIF-compliant
rendering process. The inclusion of the layer five time-
sampled representation caters to relatively simple playback
and spatialization processes, eliminating the need to con-
tinuously recalculate all sound properties from high-level
instructions and this minimizes computation load. This
also ensures that scenes authored using SpatDIF version
0.4 that make use of the trajectory extension remain back-
ward compatible. Additionally it supports the goal of in-
teroperability and reproduction in future software tools of
unknown capability.

This does not prevent a capable software of rendering di-
rectly from a sixth layer representation. However, it im-
poses the presence of fifth layer information in the ex-
ported files or transmitted streams.

If a file contains sixth layer information, as indicated by
the mandatory extension declaration in the meta section,
a rendering process disregards the authoring information,
whereas an authoring or editing process that modifies the
scene’s animation processes supersedes the simpler scene
rendering information. In order to maintain the two rep-
resentations in synchrony, when storing the scene to file,
the modifications of the ‘blueprint’ of the scene in the au-
thoring layer, i.e., of shapes that describe the evolution of
scene, are always propagated down to the simpler repre-
sentation, thus potentially altering and updating existing
rendering instructions in layer five descriptors [17]. A fur-
ther consequence of this is that if for some reason a con-
flicting discrepancy has emerged between the layer five and
six representations of a spatial event, the layer six represen-
tation takes precedence, provided that the software reading
the file is able to deal with trajectories.

3.2 The Quest for Efficiency

In his seminal analysis of sonic art Wishart provides an
extended chapter dedicated to spatial motion [25, pp. 191-
235]. Taking these reflections and his many concrete ge-
ometrical shape examples as a reference point, the chal-
lenge for the definition of the authoring layer descriptors
lies in the bound-less variety of systems, functions and
models that are capable of generating motion. Much as
Wishart aims for a qualitative understanding of sound-
motion in space, the SpatDIF authoring layer aims at de-
scribing rather than formalizing the resulting shape of mo-
tion generated by an algorithm or by free-hand drawing by
a composer. It does not transport a possible formalized,
mathematical representation of a source motion, such as
for example the Lissajous formulas that generate the re-
peated figures in the canonical piece ‘Turenas’ by John
Chowning [26]. The final resulting trajectories, however,
are what the sixth layer aims at representing in their most
detailed form.

This choice is done in the spirit of achieving the most
with the least elements, and thus enables the methods for
describing curved shapes (see Fig. 2). However, as shown
in other standards such as Postscript (for example used in
eps/pdf vector graphics) [27] and CSS used for rendering
graphics on webpages [18], these few elements prove to be
sufficiently flexible and powerful to cover all but the most
exotic cases; even circular shapes can be approximated to a
very high degree using multi-segment cubic-bezier curves
[28].

Composers may think that SpatDIF’s description of tra-
jectories are counter-intuitive, but authoring is expected to
be done with software tools that provide graphical user in-
terfaces; hence there should be little or no need to interact
directly with cubic-bezier parameter values.

In SpatDIF version 0.4 a trajectory is expressed as the
combination of a spatial path and a time-based automa-
tion function. This may seem counter-intuitive compared
to simply describing position in space as a function of time.
In authoring tools it is however easier to access and author
trajectories and movements graphically when organized in
this way. In addition, this separation reflects spatial move-
ment as it occurs in everyday life: The spatial shape, with
its additional geometric transforms and spatial interpola-
tions, describes the pathway to be followed, whereas the
time-based automation function expresses how an entity or
group moves along this pathway.

4. CONCLUSIONS

The recently updated version 0.4 of the SpatDIF specifi-
cation [29] addresses the ability to define and store con-
tinuous trajectories on the authoring layer in a human-
readable way. As a result, SpatDIF provides a new way
to exchange higher level authoring data across authoring
tools that helps to preserve the artistic intent in spatial mu-
sic. Trajectories are described using cubic-beziers curves.
With a minimum amount of functions this enables a high
degree of flexibility in terms of what curves can be real-
ized.

The new group extension enables multiple entities to be
addressed collectively. In combination with trajectories
this enables coordinated movements of multiple sources.
Groups may also be used for mixing, where the gain level
of a group can be adjusted relative to other parts of the
scene while maintaining a consistent mix within the group.

SpatDIF version 0.4 compliant files that contain trajec-
tories and groups also need to include the layer five, dis-
cretized scene description information. This ensures back-
wards compatibility with version 0.3 SpatDIF-compliant
rendering software.

Support for SpatDIF version 0.4 authoring has already
been implemented in the Zirkonium spatial audio author-
ing tool. Work on archiving and restoring older spatial
compositions from the ZKM archive is ongoing, and the
restored compositions are being saved to SpatDIF version
0.4 files [6].

Finally, in addition to improvements on the authoring
layer, SpatDIF version 0.4 adds a simple description for
source spread.

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

[9]

[10]

(1]

[12]

(13]

5. REFERENCES

N. Peters, S. Ferguson, and S. McAdams, “Towards a
Spatial Sound Description Interchange Format (Spat-
DIF),” Canadian Acoustics, vol. 35, no. 3, pp. 64-65,
2007.

N. Peters, T. Lossius, and J. C. Schacher, “The Spa-
tial Sound Description Interchange Format: Principles,
Specification, and Examples,” Computer Music Jour-
nal, vol. 37, no. 1, pp. 11-22, 2013.

C. Miyama, G. Dipper, R. Krdmer, and J. C. Schacher,
“Zirkonium, SpatDIF, and mediaartbase.de: an archiv-
ing strategy for spatial music at ZKM,” in Proceedings
of the Sound and Music Computing Conference, Ham-
burg, Germany, 31. August — 3. September 2016.

J. C. Schacher, C. Miyama, and T. Lossius, “The Spat-
DIF library — Concepts and Practical Applications in
Audio Software,” in Proceedings of the joint Interna-
tional Computer Music and Sound and Music Comput-
ing Conference (ICMC|SMC|2014), Athens, Greece,
2014.

A. Pérez-Lépez, “Real-Time 3D Audio Spatialization
Tools for Interactive Performance,” Master’s thesis,
Universitat Pompeu Fabra, Barcelona, 2014.

C. Miyama, G. Dipper, and L. Briimmer, “Zirkonium
Mk IIT - A Toolkit for Spatial Composition,” Journal
of the Japanese Society for Sonic Arts, vol. 7, no. 3, pp.
54-59, 2015.

R. Diaz and T. Koch, “Live Panorama and 3-D Au-
dio Streaming to Mobile VR,” in AES Conference on
Headphone Technology, Aalborg, Denmark, 2016.

ITU, ITU-R BS.2076: Audio Definition Model.
Geneva, Switzerland: International Telecommunica-
tion Union, 2015.

N. Peters, T. Lossius, J. C. Schacher, P. Baltazar,
C. Bascou, and T. Place, “A stratified approach for
sound spatialization,” in Proc. of the 6th Sound and
Music Computing Conference, Porto, PT, 2009, pp.
219-224.

N. Peters, J. C. Schacher, and T. Lossius, “SpatDIF
specification version 0.3, draft version,” Specification
of the Spatial Sound Description Interchange Format
(SpatDIF) v. 0.3. 2010-2012, http://redmine.spatdif.
org/projects/spatdif/files.

N. Hahn, K. Choi, H. Chung, and K.-M. Sung, “Trajec-
tory sampling for computationally efficient reproduc-
tion of moving sound sources,” in Audio Engineering
Society Convention 128, May 2010.

G. Boutard and C. Guastavino, “Archiving electroa-
coustic and mixed music: significant knowledge in-
volved in the creative process of works with spatiali-
sation,” Journal of Documentation, vol. 68, no. 6, pp.
749-771, 2012.

N. Peters, J. Schacher, T. Lossius, and C. Miyama,

“SpatDIF specification version 0.4, draft version,”
Specification of the Spatial Sound Description Inter-

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

change Format (SpatDIF) v. 0.4. 2010-2016, http://
redmine.spatdif.org/projects/spatdif/files.

V. Pulkki, “Virtual sound source positioning using
Vector Base Amplitude Panning,” J. Audio Eng. Soc.,
vol. 45, no. 6, pp. 456466, 1997.

T. Lossius, P. Baltazar, and T. de la Hogue, “DBAP -
Distance-Based Amplitude Panning,” in Proc. of 2009
International Computer Music Conference, Montreal,
Canada, 2009, pp. 489-492.

M. Sarfraz, M. Asim, and A. Masood, “Capturing out-
lines using cubic bezier curves,” in Proceeding of the

International Conference on Information and Commu-
nication Technologies. 1EEE, 2004, pp. 539-540.

N. Peters, J. C. Schacher, T. Lossius, and C. Miyama,
“SpatDIF Example Files,” http://www.spatdif.org/
examples.html.

WC3 Editors, “CSS Transitions.” [Online]. Available:
https://drafts.csswg.org/css-transitions- 1/

K. Nomizu and T. Sasaki, Affine differential geometry:
geometry of affine immersions. Cambridge University
Press, 1994.

J. C. Schacher, “Gesture Control of Sounds in 3D
Space,” in Proceedings of the Conference on New
Interfaces for Musical Expression, New York, USA,
2007.

V. Pulkki, “Uniform Spreading of Amplitude Panned
Virtual Sources,” in Proc. 1999 IEEE Workshop on Ap-
plications of Signal Processing to Audio and Acoustics,
New Paltz, New York, Oct. 17-20 1999.

F. Zotter, M. Frank, and M. Kronlachner, “Efficient
phantom source widening and diffuseness in ambison-
ics,” in Proc. of the EAA Joint Symposium on Auraliza-
tion and Ambisonics, Berlin, Germany, 3-5 April 2014.

T. Lossius and J. Anderson, “ATK Reaper: The Am-
bisonic Toolkit as JSFX plugins.” in International

Computer Music Conference— Sound and Music Com-
puting, 2014, pp. 1338-1345.

A. Sédes, P. Guillot, and E. Paris, “The HOA Library,
Review and Prospects,” in International Computer Mu-
sic Conference— Sound and Music Computing, 2014,
pp- 855-860.

T. Wishart and S. Emmerson, On sonic art.
dam: Harwood Academic Publishers, 1996.

J. Chowning, “Turenas: the realization of a dream,” in
Proc. of the 17es Journées d’Informatique Musicale,
Saint-Etienne, France, 2011.

Amster-

G. Farin, Curves and surfaces for computer-aided ge-
ometric design: a practical guide. Elsevier, 2014.

J. J. Chou, “Higher order bézier circles,” Computer-
Aided Design, vol. 27, no. 4, pp. 303-309, 1995.

N. Peters, J. C. Schacher, T. Lossius, and C. Miyama,
“Specification of the Spatial Sound Description Inter-
change Format (SpatDIF) V. 0.4,” http://spatdif.org/
specifications.html, 2010-2016.

http://redmine.spatdif.org/projects/spatdif/files
http://redmine.spatdif.org/projects/spatdif/files
http://redmine.spatdif.org/projects/spatdif/files
http://redmine.spatdif.org/projects/spatdif/files
http://www.spatdif.org/examples.html
http://www.spatdif.org/examples.html
https://drafts.csswg.org/css-transitions-1/
http://spatdif.org/specifications.html
http://spatdif.org/specifications.html

	 1. Introduction
	1.1 The Stratified Approach
	1.2 SpatDIF Terminology

	 2. New in SpatDIF Version 0.4
	2.1 The Trajectory Extension
	2.2 The Pointset Extension
	2.3 Extended Interpolation Functionality
	2.4 The Automation Extension
	2.5 The Shape Extension
	2.6 The Geometry Extension
	2.7 The Group Extension
	2.8 The Source Spread Extension

	 3. Discussion
	3.1 Complementary Representations
	3.2 The Quest for Efficiency

	 4. Conclusions
	 5. References

