
Addressing Classes by Differentiating Values and
Properties in OSC

Timothy Place,a Trond Lossius,b Alexander Refsum Jensenius,c

Nils Peters,d Pascal Baltazare

a Electrotap, tim@electrotap.com
b BEK - Bergen Center for Electronic Arts, lossius@bek.no

c University of Oslo & Norwegian Academy of Music, a.r.jensenius@imv.uio.no
d CIRMMT, McGill University, Montréal, nils.peters@mcgill.ca

e GMEA, pb@gmea.net

ABSTRACT
An approach for creating structured Open Sound Control
(OSC) messages by separating the addressing of node values
and node properties is suggested. This includes a method
for querying values and properties. As a result, it is possible
to address complex nodes as classes inside of more complex
tree structures using an OSC namespace. This is particu-
larly useful for creating flexible communication in modular
systems. A prototype implementation is presented and dis-
cussed.

Keywords
OSC, namespace, Jamoma, standardization

1. INTRODUCTION
Open Sound Control (OSC)1 has evolved into the de facto

standard in the computer music community for communi-
cation in and between controllers and sound engines [11].
OSC is a protocol for transmitting messages where the ad-
dressing of nodes is based on a “slash” notation similar to
URLs. As such, OSC is focused on standardizing the com-
munication of messages. There is, however, no prescribed
standardization of the namespaces or the structure of these
namespaces.

The authors are involved in developing OSC namespaces
for the Jamoma project.2 Jamoma is a modular system for
the Max/MSP/Jitter environment. It uses OSC for inter-
nal and external communication [6]. As Jamoma’s modular
structures grow more complex, we find the bi-dimensional
namespace conventions of OSC to be inadequate for ad-
dressing our constructs. OSC standardizes the addressing
of a node, but it becomes increasingly unclear what to do
once we reach the node. The problem is exacerbated when
the node itself implements its own OSC namespace, as is
the case with Jamoma.

The OSC 1.0 specification [8] considers nodes only in
terms of their methods: “OSC Methods are the potential

1http://www.opensoundcontrol.org
2http://www.jamoma.org

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME08, Genova, Italy
Copyright 2008 Copyright remains with the author(s).

destinations of OSC messages received by the OSC server
and correspond to each of the points of control that the
application makes available. ‘Invoking’ an OSC method
is analogous to a procedure call; it means supplying the
method with arguments and causing the method’s effect to
take place.”

Our proposal extends current OSC concepts by consider-
ing nodes to represent classes in an object-oriented sense,
rather than simple methods. For the purpose of this dis-
cussion, we will be considering only nodes that contain one
or more methods and/or properties. Properties provide ad-
ditional information concerning how the node behaves and
responds to methods, e.g. by specifying how a parameter
interpolates to a new value. A node might or might not
have a value. If it does possess a value property, that value
may be set directly, as it is considered an implicit property
of the node. A node may branch out to additional nodes,
as in existing OSC practice.

This paper starts by reviewing various approaches to cre-
ating more complex communication using OSC. This is fol-
lowed by a presentation and discussion of our suggested
approach, introducing the use of a colon for differentiating
between values and properties. Finally, a prototype imple-
mentation built in Jamoma is presented and discussed.

2. COMPLEX STRUCTURES IN OSC
The original idea of OSC is that it is tree-structured into

a hierarchy called the address space, where each of the nodes
has a symbolic name and is a potential destination of OSC
messages [10]. In contrast to the static schema of MIDI,
the open nature of OSC means that the address space is
defined and created by the “implementor’s idea of how these
features should be organized” [11, p. 153].

This open approach has made OSC useful in a broad
range of applications, and adaptable to situations not fore-
seen by its developers [9]. However, this lack of standard-
ization in namespace schemas is also likely a major reason
that OSC has not gained more widespread use in commer-
cial software applications.

2.1 OSC Namespace Standardization
A growing expanse of projects, including the research on

mapping between controllers and sound engines, require the
ability to discover and query namespaces using a known and
common syntax [4]. Other projects, such as LIBOSCQS3

attempt to solve the problem of disparate namespaces by
providing a query system and service discovery for applica-
tions using the OSC protocol [2, 7].

3http://liboscqs.sourceforge.net

http://www.opensoundcontrol.org
http://www.jamoma.org
http://liboscqs.sourceforge.net


Several projects have undertaken a standardization of
OSC messages, and OSC syntax, for different purposes. In
actual practice, these independent efforts at standardizing
namespaces incorporate syntactic elements with conflicting
meanings as compared to each other. However, there are
some commonalities to these efforts and the problems that
they try to address.

2.1.1 Querying Nodes
A primary concern in many of these efforts is the ability to

query a node for it’s value. The Integra project4 uses a .get

appended to the node’s address. Meanwhile, Jazzmutant’s
OSC 2.0 Draft Proposal suggests repurposing the reserved
? to query for the value of a node [3]. We agree that
this functionality is needed, and that a standardized way
of doing it is essential. However, we propose that users are
interested not only in querying the value of the node, but
other properties of that node as well.

2.1.2 Specifying Additional Information
The standardization of OSC namespaces for interfacing

with VST Plug-ins was suggested in [12], where units may
be specified for the value that is being sent to or from a
node. In this proposal the units are specified within the
namespace. For example, /low/output and /low/dBoutput

are two ways of controlling the same thing (gain) but spec-
ified using different units. This approach is similar to how
we have previously addressed different units in Jamoma, e.g.
for specifying gain in either MIDI units: /audio/gain/midi
or dB: /audio/gain. While such an approach may be ben-
eficial in some contexts, we find that a more structured
approach could be beneficial in more complex setups. We
therefore propose that the units should be specified as a
property of that node, rather than contaminating the names-
pace itself.

2.1.3 Augmented Syntax
A review of the myriad of attempts at creating standard-

ized OSC schemas, and standardized means of discovering
and querying namespaces, indicates that additional syntax
is needed for clarifying function, address, or both when
working with a complex OSC system. Integra, Jazzmutant,
and Jamoma are all examples where additional symbols,
such as the colon, have reserved (if different) meanings.

To investigate possible alternatives for sending this struc-
tured information, it is useful to observe how existing method-
ologies represent and send data over a network.

2.2 XML
Extensible Markup Language (XML)5 is a particularly

relevant analogue to OSC. XML defines a means for for-
matting data, but not the data or anything specific to a
schema or namespace [1].

A number of standardized namespaces using XML have
gained wide adoption, including Scalable Vector Graphics
(SVG)6, XHTML7 and SOAP8. SOAP is of particular in-
terest because it is designed as a protocol for exchanging
structured information.

Using XML, information is encapsulated into elements.
These elements form a tree structure analogous to an OSC
message. Using XML elements, one way to represent the
previous audio gain example is thus:

4http://www.integralive.org
5http://www.w3.org/XML/
6http://www.w3.org/Graphics/SVG/
7http://www.w3.org/TR/xhtml1/
8http://www.w3.org/TR/soap/

/module /audio

/gain

/description

/unit {midi, dB, linear}

/description
/data type {int, float}

/

/name

node node / node

/value

/mix
/unit {percentage}

/description
/data type {int, float}

/value

Figure 1: An OSC address tree, with some nodes
as classes

<audio><gain> 0 </gain></audio>

This is clearly more cumbersome than the equivalent OSC
message:
/audio/gain 0

It is also more work for the receiving processor to parse
and it uses more bandwidth.9 However, XML elements are
able not only to express a value (content in xml parlance)
between the tags, but also they can provide properties (at-
tributes) to the node. For example, we may provide the
unit for specifying the gain:
<audio><gain unit=‘dB’> 0 </gain></audio>

We suggest a model where it is possible to fork an OSC
address to access not only the value of the node, but also
the properties of that node, much like what is possible in
other existing models such as XML.10

2.3 OSC Nodes as Classes
In the introduction we made reference to the OSC 1.0

Specification, which states that an OSC node represents
a function call on a server. We propose that OSC nodes
may represent more complex classes, and thus require a
mechanism to address the members of these classes. A class
member may be a property or a method.

In the Figure 1, the OSC namespace from the previous
examples is shown across the x-axis. Traversing the OSC
namespace is an action making a horizontal traversal across
the figure. In the next section, we will suggest a new syn-
tax for traversing this diagram on the y-axis to address the
members inside of these nodes.

2.4 Introducing the Colon Separator
In addition to the ASCII symbols already reserved for

specific purposes within the OSC protocol [10], we introduce
the colon “:” as a separator between the OSC address of a
node and the namespace for accessing the members of the
node:
<node address> <value>

<node address>:<member address> <value>

The former message sets the value of the node just as it
would using the existing OSC conventions. This is because
a property named value is considered to be implicitly ad-
dressed if there is no specific member address given. The

9The Efficient XML Interchange (EXI) Format solves many
of these concerns with XML, but at the expense of human
readability because it is a binary format. http://www.w3.
org/TR/2007/WD-exi-20071219/

10A more concise option than XML, albeit with less clar-
ity and interoperability than OSC, is JSON (http://www.
json.org)

http://www.integralive.org
http://www.w3.org/XML/
http://www.w3.org/Graphics/SVG/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/2007/WD-exi-20071219/
http://www.w3.org/TR/2007/WD-exi-20071219/
http://www.json.org
http://www.json.org


latter form calls or sets a member of the node. The member
itself is addressed using a fully-qualified OSC namespace.
Again using gain as an example, we can send two messages:
one for setting the unit property and one for setting the
value.
/module/audio/gain:/unit midi

/module/audio/gain 120

Section 3 provides an illustration of the ideas suggested
here. In the remainder of the discussion, the address of the
node will be omitted for the sake of brevity; e.g.
/computer/module/parameter:/member will be abbreviated
as :/member.

2.5 Standardizing Members
To make working with classes in OSC practical, it is

important to have some standard members in place. At
present we recommend standardizing the following member
methods, and reserving their syntax:

• :/get returns the value of the node.

• :/dump returns the state of the node, which is to say
the values of all of the properties including the value
itself.

• :/namespace returns the namespace implemented at
this node.

• :/catalog returns an enumeration of available options
for a node, if relevant.

3. A PROTOTYPE IMPLEMENTATION
The general concepts introduced in this paper form the

basis of the standardized namespace for node members used
in Jamoma. The following uses select aspects of the Ja-
moma node namespace to illustrate how class-oriented ad-
dressing in OSC can provide users with extended and struc-
tured control of available nodes.

Jamoma distinguishes between the parameters and mes-
sages of a module. Both parameters and messages are ad-
dressed as OSC nodes. The primary difference is that pa-
rameter nodes implement a value property. The remaining
properties of these nodes are shared.

3.1 Node Type
The type of the node can be specified. Possible types are

none, boolean, integer, float32, symbol and list. If one do
not want to restrict the type of the node, it can be set to
generic. The none type is only valid for messages. Some of
the properties below will only be valid for certain types of
nodes. The type property is accessed thus:

:/type :/type:/get

3.2 Controlling the Node Itself
As the node value is considered an implicit property, it

can be set and retrieved as such. If the node is an inte-
ger, float or list type it can also be stepwise increased or
decreased. If so the size of the steps is itself a property:

:/value :/value:/get

:/value/stepsize :/value/stepsize:/get

:/value/inc

:/value/dec

3.3 Controlling the Range
For integer, float and list nodes a range can be specified.

This can be useful for setting up auto-scaling mappings from
one value to another, or for clipping the output range. The
clipping property can be none, low, high or both. The range
properties are accessed thus:

:/range/bound :/range/bound:/get

:/range/clipmode :/range/clipmode:/get

/module /audio

/gain

/description

/unit {midi, dB, linear}

/description
/type {int, float}

/name

/value
/drive

/name
/granularity

/function

/name
/coefficient

/ramp

Figure 2: An example OSC address tree to nodes
within another node

3.4 Ramping to New Values
The ability to smoothly move from one value to another is

fundamental to any kind of transition and transformation of
musical or artistic material. Jamoma offers the possibility
of interpolating from the current to a new value in a set
amount of time. While the OSC message
/myComputer/myModule/myParameter 1.0

will set the parameter value to 1.0 immediately, the message
/myComputer/myModule/myParameter 1.0 ramp 2000

will cause the value to interpolate, or ramp, to 1.0 over 2000
milliseconds. Ramping in Jamoma works with messages and
parameters of type integer, float and list.

Jamoma offers vastly extended possibilities in how ramp-
ing can be done as compared to Max. In Jamoma the pro-
cess of ramping is made up from the combination of two
components: A drive mechanism triggers calculations of
new values at desired intervals during the ramp, while a set
of functions offers a set of curves for the ramping. Libraries
for both components are implemented as C++ APIs, and
can easily be extended.

3.4.1 Ramp Drive
The ramp drive in Jamoma is implemented as a library

of self-contained classes, coined RampUnits. The existing
classes include a scheduler drive using the Max scheduler, a
queue drive running in the Max queue, and an async drive
which calculates output only when an update is requested.

The ramp units internally perform normalized linear ramps.
The values are then mapped using the appropriate Functio-
nUnit as discussed in Section 3.4.2 and scaled to the appro-
priate range.

3.4.2 Ramp Function
The ramp function in Jamoma is handled by the Jamoma

FunctionLib. The FunctionLib provides normalized map-
pings of values x ∈ [0, 1] to y ∈ [0, 1] according to functions
y = f(x). Currently five FunctionUnits are implemented:
Linear, cosine, lowpass series, power function and hyper-
bolic tangent. There are plans to expand the FunctionLib
with additional functions.

3.4.3 OSC Namespace for Ramping Properties
Ramping properties are addressed using :/ramp/drive

and :/ramp/function OSC name classes.
The ramping case provides an example of a node class

which contains other node classes, as illustrated in Figure 2.
As discussed in Section 2.5 information on all available ramp
units or functions can be requested with the standardized
:/catalog method. If the current function or ramp unit



contains additional parameters, the namespace of the unit
can be retrieved by the :/namespace method, while :/dump

returns the state of the node:
:/ramp/drive :/ramp/drive:/get

:/ramp/drive:/catalog

:/ramp/drive:/dump

:/ramp/drive:/namespace

:/ramp/drive:/catalog

:/ramp/function :/ramp/function:/get

:/ramp/function:/catalog

:/ramp/function:/dump

:/ramp/function:/namespace
For instance the user can control how often the sched-

uler RampUnit is to update by setting the :/granularity

property of the ramp:
:/ramp/drive:/granularity

:/ramp/drive:/granularity:/get

The same principles apply to the function units used for
ramping.

3.5 DataspaceLib
In addition to the current RampLib and FunctionLib,

work has started on the implementation of a DataspaceLib.
The DataspaceLib will enable nodes to be addressed using
one of several interchangeable measurement units. For ex-
ample a gain parameter can be set using MIDI, dB or linear
amplitude depending on the context and preferences of the
user. The OSC representation of this will be implemented
as a set of properties to the node. The DataspaceLib is also
meant to offer mapping between more complex interrelated
coordinate systems, so that e.g. Cartesian and spherical
coordinates can be used interchangeably for description of
points in space, as it was proposed for SpatDIF [5].

4. DISCUSSION
As discussed in Section 2.1.1 other projects have also pro-

posed standardizing the means of querying values of OSC
nodes and the OSC namespace in general. They propose
syntax that differs or conflicts with the suggestions put for-
ward in this paper as well as each other. The authors call
on the OSC developer community to work towards a stan-
dardized query system to extend the current OSC 1.0 spec-
ification, resolving these conflicts in the process.

At the same time we would like to point out that the
proposal put forward in this paper broadens the scopes of
the Integra project and Jazzmutant OSC 2 proposals by
integrating a querying system with the notion of nodes as
classes. The proposal set forward in this paper could thus
be considered one step in the direction of a more object
oriented approach to Open Sound Control.

5. ACKNOWLEDGMENTS
The authors would like to thank all Jamoma developers

and users for valuable contributions, and iMAL Center for
Digital Cultures and Technology for organizing a workshop
where the issues presented in this paper were discussed.

6. REFERENCES
[1] T. Bray, J. Paoli, C. M. Sperberg-McQueen,

E. Maler, and F. Yergeau. Extensible markup
language (xml) 1.0 (fourth edition). Technical report,
W3C, September 2006.

[2] M. Habets. OSCQS - Schema for Open Sound Control
Query. System version 0.0.1, 2005.

[3] Jazzmutant. Extension and enhancement of the OSC
protocol. Draft 25 July, 2007.

[4] J. Malloch, S. Sinclair, and M. M. Wanderley. From
controller to sound: Tools for collaborative
development of digital musical instruments. In
Proceedings of the International Computer Music
Conference, Copenhagen, 2007.

[5] N. Peters, S. Ferguson, and S. McAdams. Towards a
Spatial Sound Description Interchange Format
(SpatDIF). Canadian Acoustics, 35(3):64 – 65,
September 2007.

[6] T. Place and T. Lossius. Jamoma: A modular
standard for structuring patches in max. In
Proceedings of the International Computer Music
Conference, pages 143–146, New Orleans, LA, 2006.

[7] A. W. Schmeder and M. Wright. A query system for
Open Sound Control. Draft Proposal, July 2004.

[8] M. Wright. The Open Sound Control 1.0
Specification. Version 1.0. Technical report, Avaliable:
http://opensoundcontrol.org/spec-1 0, 2002.

[9] M. Wright. Open sound control: an enabling
technology for musical networking. Organised Sound,
10(3):193–200, 2005.

[10] M. Wright and A. Freed. Open sound control: A new
protocol for communicating with sound synthesizers.
In Proceedings of the International Computer Music
Conference, pages 101–104, Thessaloniki, 1997.

[11] M. Wright, A. Freed, and A. Momeni. Open Sound
Control: State of the Art 2003. In Proceedings of
NIME-03, Montreal, 2003.

[12] M. Zbyszynski and A. Freed. Control of VST plug-ins
using OSC. In Proceedings of the International
Computer Music Conference, pages 263–266,
Barcelona, 2005.


	Introduction
	Complex Structures in OSC
	OSC Namespace Standardization
	Querying Nodes
	Specifying Additional Information
	Augmented Syntax

	XML
	OSC Nodes as Classes
	Introducing the Colon Separator
	Standardizing Members

	A Prototype Implementation
	Node Type
	Controlling the Node Itself
	Controlling the Range
	Ramping to New Values
	Ramp Drive
	Ramp Function
	OSC Namespace for Ramping Properties

	DataspaceLib

	Discussion
	Acknowledgments
	References

