
www.jamoma.org
www.vimeo.com/channels/jamoma

An Automated Testing Suite for Computer Music Environments
Nils Peters Trond Lossius Timothy Place
ICSI, CNMAT UC Berkeley BEK - Bergen Center for Electronic Arts Electrotap, 74 Objects LLC 11-14th July 2012, Aalborg University Copenhagen

!th Sound and Music Computing Conference
SMC 2012

Software development benefits from systematic
testing with respect to implementation, optimization,
and maintenance. Automated testing makes it easy
to execute a large number of tests efficiently on a
regular basis, leading to faster development and
more reliable software.

Systematic testing is not widely adopted within the
computer music community, where software patches
tend to be continuously modified and optimized
during a project. Consequently, bugs are often
discovered during rehearsal or performance,
resulting in literal show stoppers.

This paper presents a testing environment for
computer music systems, initially developed for the
Jamoma framework and Max. The testing suite works
with Max 5 and Max 6. It is independent from any
3rd-party objects, and can be used with non-Jamoma
patches as well.

1.Testing in Sound & Music Computing

Stability and reliability is a general and important
concern in all development and use of software. A
systematic approach to testing is part of contemporary
programming practice, making extensive use of solutions
for running automated tests on a regular basis.

In the sound and music computing community adoption
of systematic approaches to testing remain less wide-
spread. To artists and musicians working with real-time
media processing environments, programming is an
integral part of their artistic practice. Their patches can
be considered software programs, and they also become
critical and integrated parts of the artistic works, be that
in the form of virtual audio-visual instruments for live
performances, or patches used to run installations.

In these contexts software reliability is not just a
question of being able to work efficiently up front while
preparing the artistic work, avoiding the frustrating
experience of loosing time and work in progress due to
sudden and unexpected bugs and crashes. The very
presentation of the works in concerts, performances
and exhibitions depends on the software, and quite
literally software defects can be show stoppers.

In Jamoma Foundation we have created a general
infrastructure to support running automated tests with
various data types. For each class a test method is
implemented that can be extended to add the relevant
tests for the class. Unit tests can run very fast from the
command line without the need to start Max by means
of simple Ruby scripts.
#include "TimeDataspace.h"
TTErr TimeDataspace::test(TTValue& returnedInfo)
{
 int errorCount = 0
 int testAssertionCount = 0;
 TTValue v, expected;

 TTObjectPtr myDataspace = NULL;
 TTErr err = TTObjectInstantiate(TT("dataspace"),
 (TTObjectPtr*)&myDataspace, kTTValNONE);

 myDataspace->setAttributeValue(TT("dataspace"), TT("time"));
 myDataspace->setAttributeValue(TT("inputUnit"), TT("midi"));
 myDataspace->setAttributeValue(TT("outputUnit"), TT("Hz"));

 v = 69.0;
 expected = 440.0;
 myDataspace->sendMessage(TT("convert"), v, v);

 TTTestAssertion("MIDI note 69 to Hz", TTTestFloatEquivalence
(TTFloat64(v), TTFloat64(expected)), testAssertionCount, errorCount);

// Other tests can follow here ...

return TTTestFinish(testAssertionCount, errorCount, returnedInfo);
}

When running the ruby script from the command line,
the output looks like

TESTING TIME DATASPACE
PASS -- MIDI note 69 to second

<.. other test are here>

Number of assertions: 29
Number of failed assertions: 0

The testing system consists of a couple of Max
abstractions to test Jamoma externals within Max.
This is a simple example of an integration test for our
jcom.dataspace external, which converts values across
a variety of units:

The jcom.test.assert.equal abstraction provides the
main test functionalities: sending data (@input) to a
connected external or subpatch under test, receiving
data from it , and comparing with the expected result
(@compareTo).

There can be multiple tests within one testing patch e.g.,
for testing different input datatypes. When all assertions
in the test patch are processed, jcom.test.finished
declares the end of all tests and closes the patcher
automatically. All incomplete assertions receive a
timeout signal and are considered as failed.

This potentially makes Jamoma vulnerable to
the introduction of bugs and errors. For instance,
a change to the code in Foundation might introduce
issues and problems in all of the frameworks.
The set of functionalities and dependencies are too
extensive and complex to be able to test manually
whenever code is being altered. Instead a structured
solution for automated testing has been developed. This
is used to implement a growing number of tests that
aim at ensuring that new functionalities work according
to specifications and that development do not
introduce bugs.

Most of Jamoma's Max externals are implemented as
generic C++ units which are made available to Max by
using a generalized wrapper function.

The C++ functionalities are validated using unit tests,
while testing of the Max externals are performed as
integration tests.

Plugtastic

Max
Environment

Ruby
Environment

Foundation

AudioUnit
Plug-in Hosts

Pure Data
Environment

System Layer
(Mac OS, Windows, PortAudio, Cairo, etc.)

...

Audio Graph
 DSPGraphics

Graph

User Lib

Modular

iOS

The Jamoma layered architecture

2. Importance of Testing for Jamoma

Jamoma is a real-time interactive media processing
platform structured as a layered architecture of several
frameworks, providing a comprehensive infrastructure
for creating computer music systems. Jamoma is
available for Windows and Mac OS with a BSD open
source license. It is mainly targeted at Max, but
prototype implementations are available for using parts
of Jamoma with Pure Data, as AudioUnit plugins and on
the iOS platform.

Jamoma has a mature, well-established codebase where
the higher-level frameworks, such as Modular, depends
on several lower frameworks:

Abstract 3. Unit Testing in C++ and Ruby 4. Integration Testing in Max

Integration Testing of Audio Processes

5. Test Automations - the Test Harness

For an automated execution of a larger number of tests,
we implemented a so-called test harnesses performing the
following tasks:

1. Loading and initializing Max as the testing environment

2. Gathering all tests across Jamoma subprojects

3. Consecutive execution of tests

4. Collecting test results from individual tests

5. Tracking test progress

6. Writing results to log files

Conclusion & Future Work
Testing has become an essential tool for developing and
maintaining of Jamoma, ensuring stability with Max 6 and
Max 5 for both Windows and the Mac. In our experience
systematic testing keeps the code flexible, maintainable,
and reusable, improves confidence in the code and hence
encourages faster development cycles. More than 600
test assertions have been created so far.
Future work includes improving the test structure for
DSP processing and the integration of more audio signal
features for parametric DSP testing.

For DSP testing we have started to develop parametric
tests for audio objects. The @tolerance attribute is used
to determine a tolerance region in which the returned
values can differ with respect to the expected values.
jcom.test.sample~ grabs audio samples for testing.

Plugtastic

Max
Environment

Foundation

AudioUnit
Plug-in Hosts

Pure Data
Environment

System Layer

Audio Graph
 DSP

Graph

User Lib

Modular

iOS

