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ABSTRACT
This paper presents a system for identifying the room in
an audio or video recording through the analysis of acous-
tical properties. The room identification system was tested
using a corpus of 13440 reverberant audio samples. With
no common content between the training and testing data,
an accuracy of 61% for musical signals and 85% for speech
signals was achieved. This approach could be applied in a
variety of scenarios where knowledge about the acoustical
environment is desired, such as location estimation, music
recommendation, or emergency response systems.

Categories and Subject Descriptors
S.01 [Media Content Analysis and Processing]: Mobile
and Location-Based Media

General Terms
Experimentation, Measurement

Keywords
Room identification, Audio analysis, Room acoustics, Loca-
tion estimation

1. INTRODUCTION
Most of our time is spent indoors and, as such, in re-

verberant environments. For extracting information from
a reverberant audio stream, the human auditory system is
well adapted. Based on accumulated perceptual experiences
in different rooms, we can often recognize a specific environ-
ment just by listening to the audio content of a recording;
e.g., we can distinguish a recording made in a reverberant
church from a recording captured in a conference room.

With the emerging trend of location-based multimedia
applications, such as automatic tagging of uploaded user
videos, knowledge about the room environment is an impor-
tant source of information. GPS data may only provide a
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rough location estimate and tends to fail inside buildings.
Attempts to use the strength of WiFi signals to gain a bet-
ter accuracy were presented, e.g., in [13]. However, in these
approaches, the location must be estimated and stored as
meta data at the time of the capturing process. If either
GPS and WiFi coverage is insufficient, or the capturing de-
vice does not support this technology, the location cannot
be estimated. In [19] an alternate method predicts common
locations by relying on identifying visual similarities (land-
marks or similar interior objects). This approach does not
account for changes in spatial configurations that may oc-
cur, like when new tenants or home owners move furniture
or redesign their rooms.

Instead we propose to analyze the audio component in
multimedia data. This can be complementary to aforemen-
tioned methods as shown in [12]. Although the specific anal-
ysis of acoustical properties to predict the room environment
is new (see Section 1.1), the principles of room acoustics are
well understood. Rooms can be described through room
impulse responses (RIR, see [9]), the “fingerprint” of a spe-
cific room. Obtaining RIRs is a time-consuming process and
specific measurement signals and equipment are needed [17].
Although many applications might benefit from knowledge
about the room environment, it is often too complicated or
even impossible to conduct such RIR measurements. There-
fore, we propose using machine learning techniques to iden-
tify rooms from ordinary audio recordings.

Besides location estimation, many other applications can
benefit from knowledge about the acoustical environment.
For instance automated speech recognition systems, known
to be easily affected by unknown room reverberance, could
adapt the recognition engine based on the identified room
acoustic environment. A music recommendation system
could automatically create a playlist of recordings made in
a specific concert venue. In an emergency response system,
the room acoustics within an emergency phone call may
give additional cues beneficial for the rescue, or even ex-
pose a fake emergency call. The latter example points to
law-enforcement and forensic applications.

1.1 Related work
Using machine learning techniques for identifying room

acoustic properties from reverberant audio signals is a very
young field of research.

A Gaussian mixture model (GMM) approach [16] esti-
mated the room volume in reverberant speech recordings
into six room classes, ranging from 40 m3 to 18000m3. From
the four tested feature extraction approaches, the best re-
sults were achieved by computing RIR features from an esti-



mated RIR derived from abrupt stops in speech signals with
an equal error rate or (EER) 22%. The worst EER (30%)
was achieved by using Mel-Frequency Cepstral Coefficient
(MFCC) features extracted from reverberant speech. In the
latter, 12 MFCCs and their deltas were extracted using a
1 sec. Hamming window. In [8] three different methods
to estimate the reverberation time T60 from reverberated
speech were compared. These methods are based on the
Modulation Energy Ratio, Spectral Decay Distribution, and
on a maximum likelihood of a statistical model of the sound
decay. In low noise conditions the latter two methods were
found to provide accurate estimation to within ±0.2 sec for
T60 ≤ 0.8 sec. To the author’s knowledge, there are no stud-
ies for room classification using musical material.

2. METHODOLOGY

2.1 The corpus
Because no standardized dataset exists for the task of

room identification, we generated a corpus from anechoic
audio recordings, each filtered with a variety of impulse re-
sponses from a number of rooms. To allow reproducibility of
our results, we intentionally use publicly available anechoic
audio recordings and RIRs datasets. One requirement in cre-
ating the corpus was that only RIRs from real rooms were
included, i.e., they are not synthesized using room acous-
tic modeling software or artificial reverberators. Another
challenging requirement was to find publicly available RIR
datasets that measured multiple RIRs in a room. This is
crucial to generalize our experimental results: an RIR de-
pends on the location of sender and receiver, therefore no
RIR within a room is completely similar to another. The
final set of RIRs are collected from the databases [1, 2,
4], and [18] and comprise seven rooms. For each selected
room, 24 RIRs are available. Table 1 summarizes several
objective RIR measures [11] and their variation across the
24 RIRs per room. Particularly interesting and potentially
challenging for our approach, the datasets of Church 1 and
Church 2 have been captured in the same room (St. Mar-
garet’s Church in York [4]), each with a different acous-
tical configuration. Thus they are considered as two dif-
ferent rooms. For Church 1, drapes and panels have been
used to make this room suitable for lectures and speech; for
Church 2, panels were removed to create a more reverberant
space suitable for music recitals.

The anechoic musical recordings were taken from [4, 5, 7].
The recordings of [7] captured multiple instruments within
a recording, whereas the rest of the anechoic audio files con-
tain single instruments, e.g., trumpet, guitar, or a clarinet.
We limited the sample length to 30 seconds. Forty anechoic

speech recordings were taken from the EMIME speech cor-
pus [3] and from [5] and comprise 20 different male and 20
female speaker samples of 20 seconds. All anechoic samples
are musically or lexically unique within the dataset.

In total, 80 anechoic audio files and 168 RIRs are used
to generate 13440 reverberant audio samples in 16 bit and
44.1 kHz. The total size of the corpus is 30 GB.

2.2 The room identification system
Our room identification system is derived from a GMM-

based system using Mel-Frequency Cepstral Coefficient
(MFCC) acoustic features, which have proven to be effec-
tive in related audio-based tasks such as acoustic event de-
tection [14], location identification [12], and speaker recog-
nition [15]. MFCC features C0-C19 (with 25 ms window
lengths and 10 ms frame intervals), along with deltas and
double-deltas (60 dimensions total), are extracted with an
upper frequency limit of 15 kHz using HTK [20]. For each
audio recording, one room-dependent GMM is trained for
each room using MFCC features from all audio recordings
associated with that room. This is done via MAP adapta-
tion from a room-independent GMM, trained using MFCC
features from all audio tracks of all rooms in the develop-
ment set. During testing, the likelihood of MFCC features
from the test audio tracks are computed using the room-
dependent GMMs of each room in the training set. A total
of 128 mixtures and simplified factor analysis [10] are used
for each GMM. The open-source ALIZE toolkit is employed
for the GMM and factor analysis implementations [6].

The likelihood values for which the room of the test audio
matches the room of the GMM model are known as the true
scores; values for which the rooms do not match are known
as the impostor scores. The system performance is based
on the equal error rate (EER), which occurs at a scoring
threshold where the percentage of impostor scores above the
threshold equals the percentage of true scores below it.

3. EXPERIMENTS AND RESULTS
Four different sets of experiments were carried out to un-

derstand the performance of our room identification system
and to explore potential challenges. The first three groups
of experiments explore the system’s performance by using
fundamentally different sets of training, testing, and devel-
opment sets. All experiments are carried out using 3-fold
cross validation and the averaged equal error rate (EER) is
reported. All experiments are first carried out by separately
testing the Music samples and Speech samples of the corpus.
For the Combined setting, the entire corpus is used.

Table 1: Standard Acoustical Measures of the different rooms used for creating the corpus. The data shows
average µ and standard deviation σ across the 24 RIRs per room.

Room + Reference Vol [m3] EDT(A) [sec] T30 [sec] ITDG [ms] CT [ms] BR
µ σ µ σ µ σ µ σ µ σ

Bedroom [2] 25 0.255 0.040 0.278 0.010 1.500 0.751 13.269 4.811 1.391 0.546
Studio [1] 150 0.530 0.163 0.670 0.021 1.652 0.758 7.937 4.217 3.288 0.548

Classroom [18] 236 3.766 0.039 6.649 1.865 4.888 4.180 89.137 26.221 1.292 1.031
Church 1 [4] 3600 2.512 0.108 3.152 0.071 6.999 6.898 58.612 16.713 0.898 0.136
Church 2 [4] 3600 3.264 0.116 3.645 0.046 9.754 8.616 72.905 20.403 0.895 0.148

Great Hall [18] unreported 4.059 0.187 5.395 2.503 3.075 1.944 59.029 17.662 1.337 0.787
Library [18] 9500 5.533 0.177 6.258 1.544 6.738 13.292 87.513 29.470 1.318 1.419
EDT(A): A-weighted Early Decay Time; ITDG: Initial Time Delay Gap; CT: Center Time; BR: Bass Ratio



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

40 anechoic audio samples

24 R
IR

 per room

7 rooms

Training Set 
(320 x 7)

Development Set 
(320 x 7)

Testing Set 
(320 x 7)

(a) Experiment A

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

Testing Set 
(312 x 7)

Development 
Set (312 x 7)

Training Set 
(336 x 7)

40 anechoic audio samples

24 R
IR

 per room

7 rooms

(b) Experiment B

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Training Set 
(104 x 7)

Development 
Set (104 x 7)

Testing Set 
(112 x 7)

40 anechoic audio samples

24 R
IR

 per room

7 rooms

(c) Experiment C

Figure 1: Arrangements of training, development, and testing data for the Experiments A – C

3.1 Design

3.1.1 Experiment A
In this experiment, the reverberant audio files of the train-

ing sets, development sets, and testing sets are based on
common anechoic audio samples. As depicted in Figure 1(a),
the difference between the datasets are the different RIRs
within a room the anechoic audio samples were filtered with.
In total each of the three datasets comprises 320 audio sam-
ples for each of the seven rooms, resulting in 2240 audio
samples per set.

3.1.2 Experiment B
Here, the datasets are created in opposition to Experiment

A. Now the training set, development set, and testing set
are created based on the same RIRs. The difference across
the sets is in the source files (Figure 1(b)). Compared to
Experiment A, this experiment is potentially more challeng-
ing, because the training is based on completely different
anechoic source files than the model was trained on.

3.1.3 Experiment C
The three datasets are based on different anechoic audio

samples as well as different RIRs per room. As can be seen in
Figure 1(c), they have no common audio data. This scenario
is closest to reality where the system estimates the room
based on a completely unknown audio recording.

3.2 Results
Table 2 summarizes the averaged equal error rates (EER)

for all three experiments with the different content condi-
tion music, speech, and combined. All results are the aver-
aged EER of a 3-fold cross validation. Three observations
can be made. Compared to the musical material, the EER
of the speech content in all experiments is about twice as
good. The EER of the combined condition, where testing
and training datasets contained both music and speech con-
tent, is about the average of the EER for music and specch
in separation. Second, the EER of Experiment C is about
twice as high compared to those of Experiment A and Ex-
periment B. Experiment A and Experiment B resulted on
average in a similar EER. However, for Experiment B, where
the training, development, and testing datasets differ with
respect to the audio content, the variance of the EER across
the three different rounds in the cross validation is consid-
erably higher than those for Experiment A.

All experiments were also carried out using the limited
feature set of pure MFCC, and MFCC+∆. These results
are not shown since they achieved a higher EER.

Figure 2 shows the confusion matrix of the normalized es-
timation scores of the testing data in Experiment C (music)
- the experiment with the highest EER and an accuracy of
61%. For speech signals, the accuracy was 85% (not shown

Table 2: Resulting equal error rates (EER)
Experiment Music Speech Combined
Experiment A 15.07 8.57 13.23
Experiment B 14.71 7.67 11.28
Experiment C 32.36 15.14 23.85

here). The confusion matrix clearly shows that the room
identification system is able to relate audio data to the cor-
rect room. One can also see that the estimation error is not
randomly distributed. Rather it depends on the (acoustical)
similarities of the tested rooms. For instance, as speculated
in Section 2.1, there is high confusion between the audio
data associated with Church 1 and Church 2. Contrarily,
Bedroom and Studio are least prone to confusion.

Figure 2: Confusion matrix of the estimation scores
for Experiment C (music)

Non-parametric multidimensional scaling (MDS) was per-
formed on the confusion data. MDS is a technique where dis-
similarities of data points are modeled as distances in a low-
dimensional space. A large dissimilarity is represented by a
large distance and vice versa. The first two dimensions of
the MDS are depicted in Figure 3 and clearly shows the abil-
ity of the system to separete the different rooms. Using rank
correlation, we found that the first MDS dimension is well
correlated with the Bass Ratio (BR) feature (ρ(6) = −.79),
which is the ratio of the low-frequency reverb time com-
pared to the mid-frequency reverb time. The second MDS
dimension is perfectly correlated with the A-weighted Early
Decay Time (EDT(A)) of the RIRs (ρ(6) = −1.0). The
EDT is based on the time in which the first 10 dB decay of
the reverb occurs and is closely related to the perceived re-
verberance [11]. The MDS organizes the seven tested rooms
in four clusters. Interestingly, these four clusters coincides
with the four RIR datasets used for creating the corpus.
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Figure 3: MDS analysis of the data shown in Fig. 2

3.3 Effect of MFCC window size
The most prominent parameter that can influence the fea-

ture extraction process and eventually the resulting EER is
the MFCC window size. Speech recognition applications
historically use a window size of 25 ms. In contrast, [16]
applied a 1 sec MFCC window size.

Using the design of Experiment C and by varying the
MFCC window size from 12.5 ms to 1 sec, we measured
the effect on the EER. Figure 4 shows that a larger window
size leads to a higher EER. On average, the lowest EER was
achieved with a size of 25 ms. This finding suggests that
for room identification short-term MFCC features are more
suitable than-long term MFCC features.

12.5 25 50 100 200 500 1000

15

20

25

30

35

E
E

R
 [
%

]

MFCC window size [ms]

 

 

Music

Speech

Figure 4: Effect of MFCC window size on the EER

4. CONCLUSION AND FUTURE WORK
We have presented a system for identifying the room in an

audio or video recording based on MFCC-related acoustical
features. Using a 30 GB corpus with more than 13000 rever-
berant audio samples from seven different rooms, this GMM-
based system was tested under various conditions. With no
common content between the training and testing data, the
system achieved overall accuracy of 61% for music and 85%
for speech signals. Moreover, with common content between
the training and testing data, the error is halved. These re-
sults are very promising and show the feasibility of using im-
plicit audio cues for identifying the acoustical environment
in a video or audio recording. To potentially improve the
accuracy for music content, we want to explore additional
features such as those based on the modulation spectrogram.
We plan to train our system on large scale real-world audio
and video datasets from Flickr and YouTube for identifying
concert venues and other indoor environments.
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