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5. Conclusion and Future Work

We have presented a system for identifying the room in 
an audio or video recording based on MFCC-related 
acoustical features. With no common content between 
the training and testing data, the system achieved overall 
accuracy of 61% for music and 85% for speech signals. 

To potentially improve the accuracy for music content, 
we want to explore additional features such as 
those based on the modulation spectrogram.
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We present a room identification system in an 
audio or video recording through the analysis of 
acoustical properties. The room identification system 
was tested using a corpus of 13440 reverberant audio 
samples. With no common content between the 
training and testing data, an accuracy of 61% for 
musical signals and 85% for speech signals was 
achieved. This approach could be applied in a variety of 
scenarios where knowledge about the acoustical 
environment is desired, such as location estimation, 
music recommendation, or emergency response 
systems.

S.01 [Media Content Analysis & Processing]: 
Mobile and Location-Based Media

Room identification,  Audio analysis, Room acoustics, 
Location estimation

1. Introdution

With the trend of location-based multimedia 
applications, knowledge about the room environment 
is an important source of information. GPS data may only 
provide a rough location estimate and tends to fail inside 
buildings. The strength of WiFi signals can be used 
to gain a better accuracy [1], but this relies on WiFi signals 
and receiver. [2] predicts common locations by relying on 
identifying visual similarities (landmarks or similar 
interior objects). This approach does not account for 
changes in spatial configurations that may occur, like when 
new tenants or home owners move furniture or redesign 
their rooms.

We propose to analyze the audio component in 
multimedia data. This can be complementary to other 
methods.

Using machine learning techniques for identifying room 
acoustic properties from reverberant audio signals is a 
very young field of research; see [3, 4].

⁃ Room-tuning for assistive hearing aids

⁃ Room-tuning for automated speech recognizers

⁃ Find music performed in the same venue

⁃ Room prediction for emergency response systems

⁃ Forensic and law enforcement

2. The Corpus

Because no dataset exists for the task of room 
identification, we generated a corpus from anechoic 
audio recordings, each filtered with a variety of IRs from 
a number of rooms. To allow reproducibility of our 
results, we intentionally use publicly available anechoic 
audio recordings and RIRs datasets. 

Abstract 4. Experiments and Results

4.1 Effect of MFCC Window Size

4.2 From Confusion Matrix to MDS

The confusion matrix shows that the Room ID system 
successfully relate audio data to the correct room.

The Accuracy in Experiment 3 is 85% for speech, for 
music 61%.

The estimation error is not random, but 
depends on the acoustical similarity of the tested 
rooms.

Non-parametric multidimensional scaling (MDS) was 
performed on the confusion data.

The first MDS dimension is well correlated with the 
Bass Ratio (ρ(6) = !.79), the ratio of the low-
frequency reverb time compared to the mid-frequency 
reverb time. The second MDS dimension is perfectly 
correlated with the A-weighted Early Decay 
Time of the RIRs (ρ(6) = !1.0), the time in which the 
first 10 dB decay of the reverb occurs and is closely 
related to the perceived reverberance. 
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The most prominent parameter that can 
influence the feature extraction process and eventually 
the resulting EER is the MFCC window size. Speech 
recognition applications historically use a window size of 
25 ms. In contrast, [3] applied a 1 sec. MFCC window.
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3. The Room Identification System
Our room identification system is derived from a GMM- 
based system using Mel-Frequency Cepstral Coefficient 
(MFCC) acoustic features, which have proven to be 
effective in tasks such as speaker recognition [5]. 
MFCC features C0-C19 (with 25 ms window lengths 
and 10 ms frame intervals), along with deltas and 
double-deltas (60 dimensions total), are extracted.

One room-dependent GMM is trained for 
each room using MFCC features from all audio 
recordings associated with that room. This is done via 
MAP-Adaptation from a room-independent 
GMM, trained using MFCC features from all audio 
tracks of all rooms in the development set. 

During testing, the likelihood of MFCC features 
from the unknown audio recordings are computed using 
all room-dependent GMMs in the training set. 

A total of 128 mixtures and simplified factor analysis are 
used for each GMM. The ALIZE toolkit is employed for 
the GMM and factor analysis implementations [6].
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Performance is measured with the Equal Error Rate 
(EER), a scoring threshold where the percentage of 
impostor scores above the threshold equals the 
percentage of true scores below it.

Confusion Matrix of the estimation 
scores for Experiment 3 (music)

Non-parametric MDS analysis of 
the same data (Exp. 3, music)

1.1 Prior Art


