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Introduction

Estimating the direction of arrival (DOA) of sound
sources is an important task of sound field analysis which
is conventionally performed using two or more stationary
microphones. In recent years, various single-microphone
localization approaches have been proposed to reduce
the cost and memory needs of multi-microphone setups.
Many of these utilize a scattering body with known DOA-
dependent scattering characteristics and require prior
knowledge of the sound sources to be localized [1, 2, 3].

The introduction of microphone movement allows for
DOA estimation without these requirements. This was
demonstrated in [4], where a signal was constructed from
a circular microphone array using circular sampling, i.e.,
taking the first sample from one microphone and the fol-
lowing samples from the neighboring microphones in a
circular fashion. Although this approach does not uti-
lize movement, the resulting signal is equivalent to that
captured by a circularly moving microphone. This arti-
ficial motion introduces periodic shifts in frequency due
to the Doppler e↵ect. The DOA of sound sources can
subsequently be estimated by estimating the phase of
these periodic shifts. In [5] this approach was verified in
practice using a circularly moving microphone rotating
at a maximum speed of approximately 17 rotations per
second. However, localization was only performed using
known, single-frequency signals.

The DOA estimation approach proposed in this paper
not only allows for the localization of unknown wide-
band and single-frequency sources but also enables the
reconstruction of the original signal. The algorithm was
verified in practice in a low reverberant environment us-
ing the rotating equatorial microphone (REM) depicted
in Fig. 1. In our experiments, rotational speeds between
24, 34, and 42 rotations per second were employed. More
details regarding the REM prototype can be found in [6].
Please note that this paper corresponds to a condensed
version of the article found in [7]. For a more compre-
hensive description of the algorithm and the results pre-
sented herein, please refer to the full article.

Problem formulation

Consider the setup depicted in Fig. 2, where a circu-
larly moving microphone is situated in a free field which
contains one sound source emitting a single frequency
fsrc. The source is placed at azimuth ' relative to the
initial microphone position and at a su�cient distance
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Figure 1: Photograph of the REM prototype.

Figure 2: Rotating microphone in a sound field composed
of monochromatic plane waves of frequency fsrc arriving at
azimuth ' relative to the initial microphone position.

such that all incoming sound waves can be assumed to
be plane waves with a constant amplitude. The radius
and the angular velocity of the rotation are selected as r
and !rot = 2⇡frot. Under these conditions, the frequency
observed by the microphone is sinusoidally shifted due to
the Doppler e↵ect and can be expressed as

fobs(t, fsrc,') =

✓
1� 2⇡rfrot · sin(2⇡frott� ')

c

◆
· fsrc ,

(1)

where c denotes the speed of sound. The signal cap-
tured by the microphone therefore corresponds to a si-
nusoidally frequency modulated waveform with carrier
frequency fsrc and modulation frequency frot. Mathe-
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matically, this can be expressed as

x(t, fsrc,') = A0 cos(2⇡fsrct+ � cos(2⇡frott� ') + �0) ,
(2)

where A0 represents the amplitude of the plane waves
with arbitrary initial phase �0 and � = 2⇡r · fsrc/c de-
notes the modulation index, which quantifies the degree
to which the frequency is being shifted.

The direction-dependent frequency response of the mi-
crophone further impacts the signal that is being cap-
tured. For the sake of simplicity, we neglect the phase
response of the microphone in this paper and only con-
sider the direction-dependent magnitude response, which
we denote as |H(fm,'m)|. Here, fm denotes the fre-
quency of interest and 'm refers to the DOA of a sound
source relative to the front of the microphone. For exam-
ple, the on-axis magnitude response of the microphone is
given by |H(fm, 0)|. When taking into consideration the
microphone’s direction-dependent magnitude response,
we find that the amplitude captured by the microphone
changes periodically. This can be modeled by replacing
A0 from (2) with the following term:

A0(t, fsrc,') = A0 ·H(fobs(t, fsrc,'),'� 2⇡frott) , (3)

where fobs(t, fsrc,') is given by (1). The signal captured
by the microphone therefore corresponds to a frequency
and amplitude-modulated version of the original signal.
Both modulation terms are periodic with a period of frot
and an initial phase '. Direct estimation of the phase of
the modulation is only possible for monochromatic and
known signals, therefore we require a more elaborate ap-
proach to localize unknown and arbitrary signals. The
idea we propose is to compensate for the distortions intro-
duced by the microphone rotation. More specifically, we
will compensate the distortions for multiple DOA guesses
and select the DOA guess whose associated compensated
signal features the least distortion. This, however, intro-
duces two new challenges, namely how to perform DOA-
dependent distortion compensation and how to quantify
the distortion present in each compensated signal with-
out prior knowledge of the source signal. These two
points will be addressed in the remaining sections.

Modulation compensation

Since the distortions introduced by the microphone
movement are forms of amplitude and frequency modula-
tion, we will refer to the compensation of these e↵ects as
amplitude and frequency unmodulation for a given DOA.

We denote the discrete signal captured by the micro-
phone as x(nT ), where T is the sampling interval and
n 2 {0, 1, ..., N � 1} is the n-th sample of the N -length
signal. We further define X(k) as the discrete Fourier
transform (DFT) of x(nT ), where k 2 {0, 1, ..., N/2} is
the k-th frequency bin. To perform amplitude and fre-
quency unmodulation, we define the following transform:

y(nT,') =
1

N

N/2X

k=0

X(k) · ej2⇡ k
N n · z(n, k,') , (4)

where y(nT,') is the transformed signal for a given DOA
' and z(n, k,') is a transformation function, which we
will define in the following. If we set z(n, k,') = 1
then (4) corresponds to the inverse DFT of X(k), re-
sulting in y(nT,') = x(nT ). By choosing z(n, k,') ap-
propriately, we can perform a modulated inverse DFT
which uses modulated complex sinusoids as opposed to
complex sinusoids as its basis functions. This allows us
to amplitude and frequency modulate arbitrary signals,
as opposed to single-frequency signals discussed in the
previous section, using arbitrarily shaped and frequency-
dependent modulation functions. By choosing the cor-
rect modulation shapes, the modulation introduced by
the microphone rotation can be canceled out for a given
DOA, resulting in unmodulation.

Amplitude unmodulation

To obtain the correct z(n, k,') for amplitude unmodula-
tion, it is beneficial to first address how z(n, k,') would
have to be chosen to model the frequency-dependent am-
plitude modulation introduced by the microphone rota-
tion. Eq. (3) shows how a single frequency is ampli-
tude modulated. Therefore, we can derive the amplitude-
modulated basis functions by applying (3) to each DFT
basis function at its corresponding center frequency. This
is performed by setting z(n, k,') as

z(n, k,') = A0(nT,
k

NT
,') . (5)

Performing amplitude unmodulation requires selecting
z(n, k,') such that the amplitude modulation introduced
by (5) cancels out. This is easily achieved by selecting

z(n, k,') =
1

A0(nT,
k

NT ,')
. (6)

Frequency unmodulation

Compensating for the frequency modulation introduced
by the microphone rotation is more cumbersome since it
a↵ects the signal in a more complex fashion than ampli-
tude modulation, which only a↵ects the envelope of each
DFT basis function. To derive the necessary z(n, k,') for
frequency-dependent frequency unmodulation, it is once
again beneficial to first simulate the frequency modula-
tion introduced by the microphone rotation. In light of
this, we reformulate (2) as

x(t, fsrc,') = A0 cos(2⇡fsrc(t+ tshift(t,')) + �0) , (7)

where tshift(t,') = r/c · cos(2⇡frott � '). This reformu-
lation makes it clear that a sampled modulated single-
frequency signal is identical to an unmodulated signal
sampled at times nT+tshift(nT,'). By formulating these
time shifts as a complex exponential in a similar man-
ner to the complex DFT basis functions, the frequency-
dependent frequency modulation introduced by the mi-
crophone rotation can be modeled by setting

z(n, k,') = e
j2⇡ k

N · tshift(nT,')
T . (8)

To perform frequency unmodulation we require time
shifts which cancel out the time shifts from (8). To our
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knowledge, these time shifts cannot be computed ana-
lytically, therefore they are instead obtained using the
following optimization:

tshift(nT,') = argmin
x

|r cos(2⇡frot (nT + x)� ') + c x| .

(9)

A detailed derivation of this formula can be found in [7].

These insights now allow us to amplitude and frequency
unmodulate a signal for a given DOA guess by applying
amplitude unmodulation (Eqs. (4) and (6)) and subse-
quently frequency unmodulation (Eqs. (4), (8) and (9)).

Quantifying amplitude modulation

Let us now cover how the presence of amplitude modula-
tion in the unmodulated signals is quantified. Since the
microphone employs rotational speeds between 24 to 42
rotations per second, the majority of real-world signals
can be assumed to feature a (close to) constant energy
during one microphone rotation. Therefore, if we perform
amplitude unmodulation correctly, we expect the corre-
sponding signal to feature constant energy during one
microphone rotation, whereas if amplitude modulation
remains, we expect fluctuations in energy. This concept
is illustrated in Fig. 3, where a 2 kHz sine wave, which
has been captured by a rotating microphone, was unmod-
ulated for 360 equally spaced guesses of ' 2 [0, 2⇡) and
the energy of each power spectral density (PSD) frame
is plotted for one microphone rotation. As it can be ob-
served, the energy is constant at ' = ⇡, therefore it can
be concluded that this is the best DOA guess. Algorith-
mically, this guess is identified by finding the unmodu-
lated signal with the lowest variance in energy.

Figure 3: Energy fluctuation of a 2 kHz sine wave captured
by a rotating microphone with DOA ' = ⇡ that has been
unmodulated for 360 equally spaced DOA guesses for one mi-
crophone rotation.

Quantifying frequency modulation

The presence of frequency modulation is identified using
a noteworthy property of sinusoidal frequency modula-
tion. This property can be shown by analyzing the PSD
of the signal from (2) for di↵erent values of the modula-
tion index �. An example plot of the �-dependent PSD
of (2) for fsrc = 8kHz, frot = 42Hz and ' = �0 = 0 is
depicted in Fig. 4. Note that the PSD was estimated by

Figure 4: PSD of a sinusoidally frequency modulated 8 kHz
sine wave for an increasing modulation index.

Figure 5: Energy and Focusedness of Fig. 4. Both plots
have been normalized by dividing each graph by its respective
maximum value.

computing the squared magnitude of the DFT of (2),
where a DFT length of 8192 was utilized. It can be
observed that as the modulation index increases, more
sidebands appear around the 8 kHz source signal. This
phenomenon is explained by the following alternative for-
mulation of sinusoidal frequency modulation

cos(2⇡fsrct+ � sin(2⇡frott� ('� ⇡

2
)) + �0)

=
1X

n=�1
Jn(�) cos(2⇡(fsrc + nfrot) t� n('� ⇡

2
) + �0) ,

(10)

where Jn(·) denotes the Bessel function of the first kind
for integer order n. Since

P1
n=�1 J

2
n(x) = 1 for x �

1, the energy of (2) remains constant regardless of the
modulation index. This is indicated in Fig. 5, where E(�)
corresponds to the �-dependent energy of (2). Since the
energy is most focused at � = 0, we introduce a measure
called focusedness, given by

F (�) =

N/2X

k=0

(Sxx(�)k)
2
, (11)

where Sxx(�)k denotes the k-th frequency bin of the PSD
of (2). It can be observed from Fig. 5 that this measure
decreases as the modulation index increases.
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Figure 6: Block diagram of the DOA estimation algorithm.

(7a) Results for single-frequency signals.

(7b) Results for wideband signals.

Figure 7: Real-world localization accuracy.

DOA estimation algorithm

These measures now allow for DOA estimation by first
unmodulating a given signal for an arbitrary number of
DOA guesses and subsequently dividing each unmodu-
lated signal into multiple subbands and frames. Then,
for each frame and subband, the signal with the lowest
energy variance and highest focusedness is identified and
the corresponding DOA is returned. These DOA esti-
mates are subsequently combined by applying probability
density function (PDF) estimation and then multiplying
these PDFs together. The peak in the final PDF is the
final DOA estimate. Fig. 6 depicts the full algorithm.

Practical experiments and results

The DOA estimation approach was verified using the
REM placed at a height of 1.2m in a low reverberant

room with dimensions W×L×H=2.75m×2.5m×2.4m.
The utilized test signals correspond to single-frequency
sinusoids ranging from 125Hz to 8 kHz as well as wide-
band signals such as a sine sweep, music, and speech
signals. The results are displayed in Fig. 7. It can be
observed that the best performance is achieved at 34 ro-
tations per second and that performance is significantly
better for wideband signals. The mean absolute error for
single-frequency and wideband signals corresponds to 23
degrees and 5.4 degrees, respectively.

Conclusion

We presented a novel method for DOA estimation using
a single moving microphone. The results indicate that
the algorithm performs well in practice, with particularly
strong performance for wideband signals. The proposed
localization approach may be beneficial in settings involv-
ing rotating elements, e.g., integration in Lidar sensors.
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