
Improving Scene Classification Models for Audio Coding Artifacts

Nils Peters
Friedrich-Alexander-Universität Erlangen-Nürnberg, International Audio Laboratories Erlangen∗, Germany

Email: nils.peters@fau.de

Introduction
Acoustic Scene Classification (ASC) is the machine lis-

tening task to associate a semantic label from an audio

recording that identifies the environment in which it has

been captured [1]. Due to steady improvements in this

area, machine listening approaches can now achieve ASC

accuracy above human abilities [2]. However, ASC accu-

racy can significantly degrade when the classified audio

signal is compressed by popular perceptual audio codecs,

which were developed for human rather than machine

listening. Audio compression likely occurs when the au-

dio signals are e�ciently stored prior ASC, or streamed,

e.g., in an IoT scenario, where the ASC is performed as

a downstream task on a cloud server. Rao and Peters re-

ported a degradation by up to 57% compared to uncom-

pressed audio signals (depending on codec and bit rate)

and that a retraining of the classification model using pre-

viously compressed audio signals increases the accuracy

when classifying perceptually coded signals. While this

approach yields significant improvements, it may not be

practical due to the required time and cost for complete

retraining. Rather than a complete model retraining,

this contribution investigates the option of fine-tuning a

model pre-trained on uncompressed signals.

Strategies for ASC Model Improvements
To improve robustness of ASC against various audio cod-

ing artifacts, di↵erent approaches may be feasible:

1. As demonstrated in [3], retraining a model architec-

ture with compressed audio signals can significantly im-

prove model accuracy even when the inferred signals have

been perceptually coded with codec configurations not

used during retraining. Besides the very time-consuming

e↵orts of retraining, the complexity of the inference does

not increase.

2. It may be impractical (or impossible) to retrain the

complete model. In such case, as a second option, one

may use a post filter for blind signal enhancement of the

audio signals prior to acoustic scene classification. For

instance, a DNN-based post-filter was proposed in [4]

to improve the perceived quality of highly compressed

speech signals. In this case, the original ASC model is

preserved, but additional run-time complexity caused by

the post-filter enhancement prior inference is needed.

3. In the fine-tuning strategy, the training of an exist-

ing (pre-trained) ASC model continues for a number of

epochs, using original and coded signals. This method is

significantly faster than the retraining approach.

∗The International Audio Laboratories are a joint institution
between the Univ. of Erlangen-Nürnberg and Fraunhofer IIS.

The Baseline Model
To facilitate reproducibility, all experiments are based

on the pre-trained acoustic scene classification model

10class-fcnn-model-0.7694 which was made available by

the developers and authors of [5]. This pre-trained model

is one component of a 5-part ensemble which was one

of the best performing proponents of the DCASE 2020

Scene Classification Challenge [6], where 10 sec. record-

ings had to be classified to be one of 10 di↵erent acoustic

environments (airport, bus, park, shopping mall, etc.).

The model is a VGG-like architecture with log-mel spec-

trogram feature input. It is comprised of ca. 11.8M pa-

rameters, consisting of 9 convolution layers followed by

Batch Normalization, Dropout, and max-pooling layers

(see segments 1-9 in Fig. 1). Channel attention is applied

to the output channels of the last convolutional layer, fol-

lowed by a global pooling layer. The final softmax layer

returns the probabilities for all 10 acoustic scene classes.

/

109876543
21

Figure 1: Visualization of the model architecture. Number
boxes indicated the model segmentation for Experiment B

Experiment A: Full Model Fine-Tuning
In this experiment, the entire ASC model (i.e., all 11.8M

parameters) is fine-tuned, using the dataset previously

used for the retraining experiments in [3]. The dataset

consists of audio files of the DCASE2020 training set [7],

extended with versions compressed (see Table 1). The

validation set consists of all audio signals of the o�cial

test split, compressed with di↵erent audio codecs. As

visible in Table 1, three categories are created. Category

1 is comprised of the same codecs and bitrate settings

which were also used for the fine-tuning. Category 2 is

created from codecs that are used during fine-tuning, but

Table 1: Perceptual audio codecs and bitrates (kbps) used
for fine-tuning

Codec Fine-Tuning Validation
cat 1 cat 2 cat 3

AAC (LC) 32 32 48, 64
HE-AAC (v1) 16, 32 - - -
MP3 64 64 32 -
Opus - - - 64
SBC - - - 64

'$*$������+DPEXUJ

���



with di↵erent bitrate settings. The Category 3 consists

of codecs not utilized for fine-tuning.

The model is fine-tuned over 40 epochs using stochastic

gradient descent with a cosine-decay-restart learning rate

scheduler. Table 2 shows the model accuracy at di↵er-

ent epochs during the fine-tuning experiment. Without

any fine-tuning (Epoch 0), the model performance signif-

icantly di↵ers across evaluated codec conditions between

0.256 (MP3 at 32kbps) and 0.769 (WAV). With just a

few fine-tuning epochs, the performance improves across

conditions and peaks at 10 epochs, suggesting that fine-

tuning beyond 10 epochs is not useful. Noteworthy, the

accuracy of the uncoded condition (WAV) tends to con-

tinuously degrade slightly with the number of epochs.

The accuracy improvements are comparable with those

achieved with time-consuming retraining as in [3].

Table 2: Accuracy of the model for di↵erent epochs during
fine-tuning. Subscript in the codec name indicates the bitrate
in kbps.

Tuning Epochs 0 1 10 20 40
Codecs

WAV .7692 .7520 .7379 .7382 .7204
cat 1 AAC32 .5788 .6958 .6944 .6951 .6806

MP364 .6745 .7069 .7123 .7018 .6951
MP332 .2564 .6398 .6324 .6277 .5836

cat 2 AAC48 .6412 .7001 .7069 .6988 .6873
AAC64 .6860 .7183 .7146 .7025 .6961

cat 3
Opus64 .6796 .6496 .6715 .6691 .6557
SBC64 .5330 .6429 .5916 .5745 .5404

Experiment B: Segmental Fine-Tuning
In Experiment A, all 11.8M parameters were fine-tuned.

To better understand which network layers are mostly

sensitive (or important) to audio coding artifacts, in this

experiment, the model is organized in 10 segments (as

indicated in Fig. 1) and each segment is fine-tuned in-

dividually, whereas all other layers remained untouched.

For each of these 10 experiments, the model is fine-tuned

for 10 epochs. The results are depicted in Fig. 2 as rel-

ative improvements compared to the pre-trained model

(i.e., no fine-tuning). For comparison, this Figure also

shows the improvements for fine-tuning the full model

(dashed lines). With respect to the segmental fine-tuning

(solid lines), it is remarkable that even by fine-tuning a

single segment, the performance can be significantly in-

creased. Especially the late CNN layers (e.g., layer 7) can

boost accuracy (e.g., for MP332 and AAC48) and achieve

performances similar or even better to those in Experi-

ment A. This result is somewhat surprising because one

could argue that fine-tuning may primarily change the

input layer by discarding high-frequency features which

are usually be a↵ected by perceptual audio coding.

Summary and Conclusion
To make large ASC models more robust in the context

of perceptual audio coding artifacts, this paper studied

two fine-tuning methods. Compared to the previously

proposed method of model retraining, it was shown that

fine-tuning can increase model accuracy with much less

Figure 2: Accuracy improvements for fine-tuning single
model segments. dashed lines: accuracy when fine-tuning full
model as in Table 2, solid lines: accuracy from fine-tuning
model segment

training e↵ort. Furthermore, it was shown that fine-

tuning can be further optimized by fine-tuning of only

small portions of the model, which makes this approach

even more e�cient. These findings are beneficial to bet-

ter understand the inner workings of machine learning

models and to improve ASC robustness whenever audio

signals are subject to perceptual audio coding, e.g., due

to transmission or lossy data storage.

References
[1] Daniele Barchiesi et al., “Acoustic scene classification:

Classifying environments from the sounds they produce,”
IEEE Signal Processing Magazine, vol. 32, no. 3, pp. 16–
34, 2015.

[2] Annamaria Mesaros, Toni Heittola, and Tuomas Virta-
nen, “Assessment of human and machine performance in
acoustic scene classification: DCASE 2016 case study,” in
IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics (WASPAA), 2017, pp. 319–323.

[3] Nagashree K. S. Rao and Nils Peters, “On the e↵ect of
coding artifacts on acoustic scene classification,” in Proc.
of the 2021 Workshop on Detection and Classification of
Acoustic Scenes and Events (DCASE), 2021.

[4] Srikanth Korse, Kishan Gupta, and Guillaume Fuchs,
“Enhancement of coded speech using a mask-based post-
filter,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2020, pp.
6764–6768.

[5] Hu Hu et al., “Device-robust acoustic scene clas-
sification based on two-stage categorization and data
augmentation,” 2020, https://arxiv.org/abs/2007.

08389, [Source Code:] https://github.com/MihawkHu/

DCASE2020_task1.

[6] Toni Heittola, Annamaria Mesaros, and Tuomas Virta-
nen, “Acoustic scene classification in dcase 2020 chal-
lenge: Generalization across devices and low complexity
solutions,” in Proc. of the Detection and Classification of
Acoustic Scenes and Events Workshop (DCASE), 2020.

[7] Annamaria Mesaros, Toni Heittola, and Tuomas Virta-
nen, “A multi-device dataset for urban acoustic scene
classification,” in Proc. of the Detection and Classifica-
tion of Acoustic Scenes and Events Workshop (DCASE),
2018.

'$*$������+DPEXUJ

���


