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ABSTRACT

Acoustic Scene Classification poses a significant challenge in the
DCASE Task 1 TAU22 dataset with a sample length of only a single
second. The best performing model in the 2023 challenge achieves
an accuracy of 62.7% with a gap to unseen devices of approximately
10%. In this study, we propose a novel approach using Inverse Con-
trastive Loss to ensure a device class invariant latent representation
and a better generalization to unseen devices. We evaluate the inter-
action of this contrastive learning approach with impulse response
augmentation and show the effectiveness for suppressing device re-
lated information in the encoder structure. Results indicates that
both, contrastive learning and impulse response augmentation, im-
proves generalization to unseen devices. Further the impulse re-
sponse dataset should have a balanced frequency response to work
effectively. Combining contrastive learning and impulse response
augmentation yields embeddings with least device related informa-
tion, but does not improve scene classification accuracy when com-
pared to augmentation alone.

Index Terms— acoustic scene classification, contrastive learn-
ing, device impulse response, augmentation, passt, transformer

1. INTRODUCTION

Acoustic Scene Detection plays a vital role in various applications,
such as hearing aids [1], smart homes [2], hands-free telephony and
biological signal analysis [3]. The objective is to classify an acous-
tic scene into several, pre-defined, classes, enabling the application
of algorithms under varying conditions. For example, the noise sup-
pression and beamforming in hearing aids uses different approaches
for a closed room and open-space [1]. With significant progress in
recent years, especially with the introduction of data-based models,
the DCASE Challenge [4] Task 1 for Acoustic Scene Classification
(ASC) attracts a great number of contributions. Recently the focus
shifted to resource-aware methods with complexity constraints [4].

One difficulty of low-complexity inference is generalization to
unseen devices. The TAU Urban Acoustic Scenes 2022 Mobile
dataset [5] poses a considerable challenge with an inference length
of only a single second. Furthermore the data is heavily imbalanced
towards one recording device. The discrepancy between record-
ing devices arises due to variations in microphone characteristics,
frequency responses and other device-specific (possible non-linear)
factors that influences the signal captured. The TAU22 dataset con-
tains audio recorded with three real devices (A: Soundman OKM II
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Classic/Studio A3, B: Samsung Galaxy S7, C: GoPro Hero5 Ses-
sion) and three simulated devices (S1-S3). Further three unseen
devices (S4-S6) are artificially generated for the testing dataset, em-
phasizing the importance of generalization to unseen devices. The
dataset is heavily biased towards device A with 62.5% of all sam-
ples, while the remaining 8 devices contain only 37.5% of data.

We evaluate the interaction of contrastive learning and device
impulse response augmentation. For our challenge submission [6]
we used contrastive learning to improve device generalization. We
show that combining both suppresses device related information in
the model embedding better, than just using each method individu-
ally. We estimate the influence on classification performance for a
state-of-the-art Transformer model with the TAU22 dataset.

By applying Inverse Contrastive Learning (ICL) [7] to the prob-
lem we encourage the model to learn device invariant representa-
tion. We use two device impulse response (DIR) datasets for aug-
mentation. The first contains recordings of 66 vintage microphone
impulse responses [8]. The second dataset is generated from 25
professional microphones recorded at different angles and distances
[9], amounting in a total of 8138 DIRs.

We first discuss in Section 2 related work when dealing with
heavily imbalanced datasets. This includes resampling methods,
invariance learning and data augmentation. In our method part, Sec-
tion 3 and Section 4, we discuss how contrastive learning helps to
improve generalization ability and the differences between both de-
vice impulse response datasets. In the final Section 5 we explain our
experiments, the outcomes and discuss implications for training.

2. RELATED WORK

2.1. Data Imbalance Resampling

The problem of device generalization is part of the broader issue
of imbalanced training. A common countermeasure is oversam-
pling of under-representated groups [10] to duplicate minority class
samples. On the other hand, undersampling of over-represented re-
moves considered samples during training epochs [11]. These tech-
niques create therefore a more balanced training set and prevent the
model to be biased for the majority class. The DCASE ASC dataset
is characterised by a stark bias towards a single device (more than
60% of total data, where 16% would be uniformly distributed). Un-
dersampling would prolong training time for the model until the
whole dataset is seen at least once.

Another possibility (for avoiding duplicating excessively when
oversampling) is synthetic minority oversampling, where new sam-
ples are generated by interpolating between existing minority
classes [12]. Freq-MixStyle [13] is an instance of this approach by
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mixing frequency statistics of spectrograms, which shows a good
generalization performance. Also Adaptive Synthetic Sampling
[14] weights likelihood of samples by difficulty and generates mi-
nority classes that are harder to learn more often.

2.2. Invariance Learning

The concept of learning invariant representations is closely related
to data imbalance in the sense that both address biases in datasets.
While data imbalance focuses on unequal distributions in samples,
learning invariant representations aims to extract features that are
robust to variations introduced by factors in the data. In both cases
the aim is reducing the impact of biases and promote generalization.

One example of invariance learning is the Generative Adversar-
ial Network (GAN). An adversarial discriminator infers the device
class during training and promotes learning invariant embeddings.
The generator and discriminator are trained in tandem, where the
generator creates realistic looking audio samples [15].

Other invariance learning methods extend contrastive learning
to self-supervised settings. As reported in [16], an online model
tries to predict the representation of a target model with an aug-
mented view. This makes representation invariant in view differ-
ences and can be applied without any labels of data.

2.3. Data Augmentation

Data augmentation helps to manage imbalanced datasets by in-
creasing the diversity and quantity of samples, therefore improv-
ing generalization ability of the model and reducing risk of over-
fitting. Common examples are SpecAugment [17] introducing ran-
dom freq/temporal masking and warping, pitch shifting [18], time
stretching and noise injection [19] into the data samples.

A simple, yet effective, method for generalizing to new devices
is impulse response augmentation. In our case we convolve our
training data with measured or simulated device impulse response
to create a more diverse and realistic dataset. For ASC the generated
data makes the training more robust and resembles a more realistic
inference environment. To model non-linear effects, dynamic range
compression [20] can simulate the microphone characteristics.

3. CONTRASTIVE LEARNING

The goal of contrastive learning is to find a latent representation
where positive pairs are grouped together, while negative pairs are
separated. Originally introduced for supervised learning [21], it re-
cently finds extensions to unsupervised and self-supervised settings
[22, 23] and application to audio [24]. In our dataset, we have de-
vice classes available making supervised methods possible.

In our approach, positive samples are selected from different
device classes, and should exhibit a greater similarity on average
compared to negative samples. Negative samples are from the
same device class and the training process should maximize their
dissimilarity. This method is used in ICL to find more mode-
collapse robust latent representations, compared to approaches us-
ing Kullback-Leibler divergence or Maximum-Mean Discrepancy
[7]. ICL utilizes a loss function defined as follows

LICL = E
(z,c)∼p(z,c)
(ẑ,ĉ)∼p(ẑ,ĉ)

[1(c = ĉ)f(z, ẑ) + 1(c ̸= ĉ)g(z, ẑ)] (1)

L = LCE + λICLLICL (2)

with asymmetric penalties for positive and negative samples

g(z, ẑ) = d2Z(z, ẑ) (3)
f(z, ẑ) = exp((α− dZ(z, ẑ))/β), (4)

where the threshold α and barrier strength β defines the extent to
which latent similarity for the same device classes are penalized.
The linear combination with the default cross-entropy loss term LCE

is controlled by λICL. The distance dZ(·, ·) is the ℓ2 norm for all our
experiments. We discuss the selection of barrier parameters α, β in
our experiments described in Sec. 5.2.

The objective of ICL is to make training invariant to unwanted
variables in the dataset. It can be used to address biases and con-
founding effects related to demographical variables [25, 26], for
example age, gender, income etc. This helps mitigate biases and
ensures correct model inference without unwanted side-effects.

In our case, we employ a Transformer model [27] as the en-
coder structure to project a spectrogram into a lower-dimensional
embedding. The encoder is expected to learn meaningful and ro-
bust representations that can be utilized for the downstream task of
acoustic scene classification. Data augmentation plays a crucial role
in training a good generalizing encoder. Furthermore, it can also
improve the impact of contrastive learning in two ways, as shown
in Sec. 5.4. First, augmentation leads to more device classes, which
gives the contrastive learning more positive and negative samples
for training. Second, the augmented device classes share some de-
vice characteristics with neighbouring classes. This makes the neg-
ative sampling more difficult, forcing the model to use a variety of
device specific traits in the data. In our case the device of an acous-
tic scene sample is altered with an additional DIR.

4. DEVICE IMPULSE RESPONSES

In this section, we provide a description of two different datasets
of microphone impulse responses that are used for augmenting the
ASC TAU22 training set. Their characteristics are quite different.

The first dataset contains recordings of 66 vintage microphones
produced by the MicIR project [8]. They are recorded in a booth
with the swept-sine method. The source is placed in approximately
20-30cm distance from the microphone. Due to different room re-
flections, the recordings should not be considered as free-field. As
seen in Fig. 1 the vintage DIRs have a frequency dependent vari-
ability and pronounced low-pass behaviour for frequencies above
10 kHz. Between the 1 kHz and 10 kHz region the data follows
a narrow band in 0.1 to 0.9 quantiles with 20% of data in a wider
20dB variation.

The second dataset contains DIRs of 25 microphones for multi-
ple angles and distances, and is henceforth called Multi DIRs. Inci-
dent angles are varied from 0° to 355° in steps of 5° and at source-
to-microphone distances of 0.5m, 1.25m and 5m. The microphone
is rotated with a computer-assisted turntable. The microphone char-
acteristics include omnidirectional, cardioid, supercardioid and bi-
directional polar patterns. The set is quite varied, due to different
microphone transduction types (condenser, moving-coil, ribbon),
single/dual and small/large diaphragms, and end/side address de-
signs.

The distribution of frequency responses (see Fig. 1 for Multi
DIRs) shows a more frequency independent variability of responses
when compared to the Vintage DIRs. Further a smaller dip for fre-
quencies above 10 kHz distorts the training data distribution less
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Figure 1: Microphone Frequency Responses for 100% ( ), 80%
( ), 50% ( ) of all data and mean ( ) values.

and avoids an inference mismatch. Finally the 0.1-0.9 quantile is
wider and exposes more variations to the model during training.

When looking at a specific example (the Røde NT2-A cardioid
microphone) over variations in incident angle, a rich pattern can be
seen in Figure 2. It follows the characteristics of a cardioid micro-
phone polar pattern, with a deep notch at 180°. This shows a large
variability for even a single microphone characteristic.

5. EXPERIMENTS

We evaluate the tandem setting of contrastive learning and DIR aug-
mentation with the TAU22 [5] dataset split to 139,970 samples for
training, 29,680 samples for validation and 29,680 samples for test-
ing. They are recorded at a sampling rate of 44.1 kHz in 12 different
European cities and 10 acoustic scenes. We first describe how we
set-up our model for all our training sessions. Then the specifics of
ICL and DIR augmentation are explained and their effects on device
invariance and scene classification discussed.

5.1. PaSST Model

We extract Mel-scaled spectrograms with 128 bands from audio
subsampled to 32 kHz sampling rate. Individual windows have a
length of 800 samples and an overlap of 320 samples. We apply a
logarithmic transformation to normalize the feature distribution.

We use the Patchout faSt Spectrogram Transformer (PaSST)
[27, 28] as our encoder structure and a single feed-forward layer
for classification. The transformer has a patch size of 16, depth
of 12 and 12 heads. Furthermore, the embedding dimension is 768,
where the classifier projects the final embedding to 10 scene classes.
To speed up training, we apply patchout along frequency axis with
a rate of 6 patches similar to the PaSST model [27].

To avoid overfitting and improve generalization, the dataset is
augmented in the following ways. We merge recordings to 10s snip-
pets and extract randomly sliding windows of 1s during training.
We also apply independent frequency masking for 48 bins and do
time masking for 24 windows and use randomized frequency cutoff
of up to 500Hz. With this we follow the training approach described
in PaSST [27], but we do not use mixstyle augmentation to compare
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Figure 2: Frequency Responses of the Røde NT2-A cardioid micro-
phone for angles 0° ( ) to 180° ( ) recorded at a distance of
50cm.

augmentation and contrastive learning properly. We apply an Adam
optimizer with the same settings as in our challenge submission [6].
An initial learning rate of 0.00042 is gradually reduced on plateau
with a patience of 10 epochs and factor of 0.5. We operate the op-
timizer at β = (0.957, 0.9514) and ϵ = 0.038. Each configuration
is trained three times for 250 epochs with a batch-size of 64 and we
use the best performance in our results.

5.2. Inverse Contrastive Loss

We apply a inverse contrastive loss during training to make clas-
sification invariant to device characteristics. The augmented term
penalizes latent distances of same device classes. This implies a
tradeoff when choosing the hyperparameters for training. The expo-
nential term (see Equation 4) acts as a barrier function for a shifted
threshold α, where the strength is controlled by β (with indicator
function in limit β → 0). We choose β = 1 for all our experiments
and perform grid search for suitable hyper-parameters which results
are shown in Table 1. Even though the variables are not indepen-
dent, we grid-searched them separately. We first fix λICL = 10 to
observe the effect of thresholding on the performance. It exhibits a
slight decrease in performance when increasing to α = 0.2, while
a more drastical degradation when increasing further. Therefore we
conclude with this value for the remaining of our experiments. The
loss weight λICL does not have such a drastic effect on the perfor-
mance, but increasing too much decreases performance by 2% ac-
curacy. We choose λICL = 0.5 as a conservative measure. The ac-
curacy improved on the validation dataset compared to λICL = 0.1,
indicating a positive effect of ICL.

5.3. Impulse Response Augmentation

For DIR augmentation, we use two dataset sources [8, 9]. We re-
sample both to 32kHz sampling rate. Further, we window the Multi
DIRs dataset [9] to 1024 samples with a Kaiser window (β = 2).

With this, we train an IR generator, similar to the FAST-RIR
[29] diffuse room impulse generator. The model is conditioned on
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α LogLoss Acc. [%] λICL LogLoss Acc. [%]
0.0 1.265 51.72 0.1 1.139 56.87
0.2 1.270 51.28 0.5 1.100 58.32
0.4 1.313 50.34 1.0 1.113 58.52
0.8 1.331 49.02 3.0 1.139 56.87
1.5 2.166 21.60 6.0 1.183 56.30

Table 1: Results for different α and λICL values. We fixed λICL =
10.0 for the α search and α = 0.2 for the λICL search. Based on the
results we choose α = 0.2, λICL = 0.5 for further experiments.

Method Accuracy [%]
PaSST 82.04
+ ICL 65.65
+ Multi DIRs 41.08
+ ICL + Multi DIRs 17.53

Table 2: Device classification accuracy results for the embedding of
a PaSST model with different generalization methods (see Sec 5.4).
Lower accuracy indicates better invariance to device class.

the microphone characteristics (1) directivity (2) transducer (3) di-
aphragm properties and angle/distance in cartesian coordinates in
total of 12 variables. We train the generator in the same GAN frame-
work as the original method with a final MSE of 0.00527. Unfor-
tunately the approximately 8000 samples of Multi DIR are not suf-
ficient for training a microphone impulse response model. We see
good generalization for varying incident angles, but not for source
distance and new synthetic device classes. Applying the generator
to our ASC model gives only a best log-loss of 1.56 and we drop it
therefore for our next comparison.

5.4. Device Related Latent Information

As an additional study we measure the device related information
during training. We create a separate device classifier with the same
capacity as the acoustic scene classifier and train it with the default
Adam optimizer until convergence. Since the device class is imbal-
anced, we use a balanced cross-entropy term as our loss measure.

The results in Table 2 are evaluated on the validation set for
the 6 devices of the training set. Because the device occurrence is
balanced, random guess is set at 1/6.

The use of contrastive learning does not lower device accuracy
as much as impulse response augmentation. A possible explanation
for this is that we can use augmentation aggressively, while use of
contrastive learning has a negative effect on training (see Table 1).
Further augmentation adds variability to the dataset and does not
necessarily inhibit the primary task.

Interestingly, combining augmentation and contrastive learning
reduces device accuracy further to the points of random guess. This
indicates, that the latent space for acoustic scene classification does
not have device-related information. When looking at the final re-
sults in Table 3, on the other hand, the results are still biased to-
wards the more common devices. To illustrate, see that the acoustic
scene classifier benefits from a robust latent representation. Even
though we have minimized device related information the encoder
still generalizes the spectrogram for the majority class better. To
mitigate this effect we would have to resample to even class distri-
bution, for example with synthetic augmentation (see related work
in Sec. 2). Another possibility is that the device classify is too shal-
low to model the benefiting factors for the scene classification, even
though they have the same capacity.

5.5. Acoustic Scene Classification Results

As the final experiment we train the PaSST model with the illus-
trated four different settings for device generalization. We see a
large gap of 0.3 log-loss between real devices and simulated/unseen
devices in Table 3 for the vanilla PaSST model - with device A best
performing of 1.012 log-loss.

The vintage DIR augmentation improves the performance for
unseen devices, but degrades that of real devices. This gives a worse
overall performance. The multi angle DIR dataset on the other
hand improves performance for all three device families, with the
largest improvement in unseen devices of approximately 0.1 log-
loss. When applying contrastive learning we see a similar effect,
but not as pronounced as the impulse response augmentation. Fur-
ther the performance for real devices suffer slightly.

Finally combining impulse response augmentation with con-
trastive learning improves performance slightly, compared to con-
trastive learning alone. On the other hand, it does not improve per-
formance when comparing to Multi DIRs augmentation alone.

6. CONCLUSION

To summarize, contrastive learning makes latent space invariant to
device classes and improves generalization. To that effect, impulse
response augmentation works better, but best device invariance is
achieved by combining both methods. The Multi DIRs shows a
greater variability and less bias for frequency responses and works
better for data augmentation when compared to the Vintage DIR. In
the final ASC experiment, contrastive learning improves log-loss,
but is outperformed by applying proper data augmentation alone.
Nevertheless, contrastive learning can be advantageous compared
to domain specific augmentation, especially when the training is
only affected by data imbalance and not by unseen classes or no
effective augmentation technique is available.

Method Real Devices Simulated Devices Unseen Devices Overall
A B C Avg. S1 S2 S3 Avg. S4 S5 S6 Avg.

PaSST 1.012 1.266 1.070 1.116 1.371 1.492 1.326 1.396 1.401 1.36 1.509 1.423 1.181
+ Vintage DIRs 1.082 1.360 1.212 1.218 1.462 1.449 1.361 1.424 1.343 1.289 1.557 1.396 1.212
+ Multi DIRs 0.979 1.221 1.090 1.097 1.347 1.427 1.318 1.364 1.277 1.302 1.425 1.334 1.139

+ ICL 1.021 1.297 1.074 1.131 1.375 1.465 1.325 1.388 1.284 1.364 1.467 1.372 1.167
+ ICL + Multi DIRs 1.030 1.190 1.139 1.096 1.372 1.412 1.318 1.367 1.302 1.327 1.474 1.368 1.156

Table 3: Log-loss validation performance of the proposed methods on the TAU Urban Acoustic Scenes 2022 Mobile dataset [5] with provided
split. The PaSST model is trained for three different seeds and best performance is picked. The validation results are grouped into real devices
(A, B, C), simulated devices (S1, S2, S3) and unseen devices (S4, S5, S6) and averaged values given to compare device families.
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