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ABSTRACT
Previous DCASE challenges contributed to an increase in the per-
formance of acoustic scene classification systems. State-of-the-art
classifiers demand significant processing capabilities and memory
which is challenging for resource-constrained mobile or IoT edge
devices. Thus, it is more likely to deploy these models on more
powerful hardware and classify audio recordings previously up-
loaded (or streamed) from low-power edge devices. In such sce-
nario, the edge device may apply perceptual audio coding to reduce
the transmission data rate. This paper explores the effect of percep-
tual audio coding on the classification performance using a DCASE
2020 challenge contribution [1]. We found that classification ac-
curacy can degrade by up to 57% compared to classifying original
(uncompressed) audio. We further demonstrate how lossy audio
compression techniques during model training can improve classi-
fication accuracy of compressed audio signals even for audio codecs
and codec bitrates not included in the training process.

Index Terms— acoustic scene classification, data augmenta-
tion, audio coding, internet of things

1. INTRODUCTION

As it can be observed in the annual DCASE challenges, classifica-
tion models to understand complex acoustic soundfields are becom-
ing increasingly robust and accurate. The evaluation scenario indi-
rectly presumes that scene classification is performed on the captur-
ing device. However, many mobile and IoT devices are resource-
constrained and may not be able to store and execute all proposed
classification architectures due to limited memory and processing
capabilities. Such models can be executed on more powerful per-
sonal companion devices or remote cloud servers. Figure 1 visu-
alizes three scenarios where the audio capture and the scene clas-
sification are split between different devices. In such scenarios,
the captured audio signals would be uploaded or streamed from the
capture device to the scene classification device. The service limita-
tions of the (often wireless) network are met by utilizing perceptual
audio codecs. Perceptual audio coding can significantly reduce the
data rate of an audio signal for storage or transmission by removing
imperceivable signal components based on psychoacoustic princi-
ples [2]. Compared to the original audio material, perceptual audio
coding does not intend to preserve the signal waveform, it rather
aims to maintain a perceptually similar or even equal audio expe-
rience. The transcoding of an audio signal from one audio codec
to another when passing through a network may introduce further
coding artifacts. Given the maturity of perceptual audio coding, one
can presume that today’s perceptual audio codecs do not affect the
human ability to classify acoustic scenes. But is this also true for
state-of-the-art classification algorithms? In this contribution, we

will study the effect of lossy perceptual coding on the model accu-
racy. To our knowledge, this may be the first study in the context of
acoustic scene classification.

Wireless Audio 
(e.g.. Bluetooth) Cellular, 

WAN

Scene Classification  
on Cloud Server

Scene Classification  
on Companion Device

Cellular, 
WAN

Wireless Audio 
(e.g.. Bluetooth)

Trans- 
coding

Coding

Figure 1: DCASE application scenarios where acoustic sensing and
classification are decoupled and signals are coded for data transmis-
sion.

The paper is organized as follow: We start with introducing the
classification architecture we use as a basis for this study. In Sec-
tion 2 we present an experiment where the overall accuracy of the
pre-trained reference model is evaluated as a function of differently
coded audio files. Section 3 reports on a series of experiments with
the goal to improve the model accuracy by various training condi-
tions. Before we conclude the paper we summarize and discuss our
findings in Section 4.

1.1. Hu et al. DCASE 2020 Classification Model

Thanks to the authors of [1] who made source code and pre-trained
models publicly available, we are able to study the effect of audio
coding artifacts on one of the best performing models of the DCASE
2020 Scene Classification Challenge. For Task 1a, this proposal was
ranked as the third best architecture, achieving a model accuracy of
76.2% on the secret 10-class evaluation dataset1. With a total of
130 million parameters, this architecture would likely be deployed
on cloud servers rather than on resource-limited edge devices.

1taken from challenge results at http://dcase.community/
challenge2020/task-acoustic-scene-classification-
results-a

http://dcase.community/challenge2020/task-acoustic-scene-classification-results-a
http://dcase.community/challenge2020/task-acoustic-scene-classification-results-a
http://dcase.community/challenge2020/task-acoustic-scene-classification-results-a
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This architecture (see Figure 2) consists of two groups of en-
semble classifiers namely 3-class and 10-class. The 10-class mod-
els classify the input features (Log-mel filterbank features) to one of
the ten original scene classes: airport, shopping mall, metro station,
pedestrian street, public square, street traffic, tram, bus, metro, and
park. The 3-class classifier is trained to predict one of the three cat-
egories: indoor, outdoor, and transportation. The final scene class is
estimated by score fusion of the 3-class and the 10-class classifier.
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Figure 2: The scene classification ensemble architecture by [1]
.

2. EXPERIMENT A

In this experiment we want to explore whether the classification
accuracy in the classification architecture described in Section 1.1
changes when inference is done on perceptually coded audio data
rather than on original (uncompressed) audio.

2.1. Methodology

For this experiment we evaluate the complete pre-trained ensemble
classifier for DCASE 2020 Task 1a by the authors of [1] using the
official evaluation split from the DCASE 2020 development set [3].
Figure 3 visualizes the data flow of this experiment. The evalua-
tion split consists of 2968 monaural audio files at 44.1 kHz, each
10 seconds long. For the sake of reproducibility, all audio files are
encoded using [4] with the perceptual audio codecs listed in Table
1. The codecs are chosen because of their support in popular mo-
bile operating systems and thus, likely to be used for compressing
recorded signals prior scene classification. As model input log-mel
filterbank features are extracted from the decoded audio signals.
The evaluation compares the classification result with the ground
truth class labels of the dataset.

Table 1: Overview of perceptual audio codecs used in this paper
Codec Reference Bit Rates [kbps]

Exp A Exp B
AAC (LC) [5] 64 32, 48, 64
HE-AAC (v1) [6] 32 16, 32
MP3 [7] 32, 64 32, 64
Opus [8] 32 64
SBC [9] 64 64
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Figure 3: Exp A: Evaluation of pre-trained models with coded audio

2.2. Results

Table 2 summarizes the results of Experiment A. We found sig-
nificant degradation of the overall model performance when scene
classification is performed on previously compressed audio data. In
our experiments, the performance of the model accuracy could drop
from 0.820 (classification accuracy on the uncompressed original
evaluation files) to 0.352, a decrease by 57.1%. Not surprising, au-
dio compression using higher bit rates (e.g., AAC at 64 kbps) tends
to achieve a better model performance.

To understand if the model accuracy changes with the percep-
tual audio quality due to audio coding, we computed the PEAQ
objective difference grade (ODG) [10] between the uncompressed
and the previously compressed audio files. For a comparative anal-
ysis of PEAQ and other quality metrics see [11]. We computed
the average ODG across all evaluation files per codec under test
and compare it with the model accuracy from Table 2. As visi-
ble in Figure 4 a high ODG (i.e., little coding artifacts) results in
a good model performance. However, for lower ODGs (more cod-
ing artifacts), this relationship vanishes: Two codecs that achieved
an ODG around −3.1 result in a very different classification accu-
racy (0.61 vs. 0.35). Further, the model accuracy is also not a reli-
able predictor for PEAQ’s ODG: A scene classification accuracy of
about 0.65 could be achieved for codecs with an ODG between -3.1
and -2.1. In summary, the scene classification performance corre-
lates only weakly with PEAQ’s estimated perceptual audio quality
(R2 = .44).

3. EXPERIMENT B

Based on the results of Experiment A and to improve the scene
classification performance of previously compressed audio data, we
propose to retrain the model using additional data augmentation. In
this series of experiments, we focus on the 10-class FCNN classi-
fication sub model (see highlight in Figure 2). These experiments
also contribute to a better understand of the trade-offs between ex-
ecuting low-complexity classification models on the edge using un-
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Table 2: Exp A: Model accuracy for differently coded signals
Codec Bit Rate Model Relative

[kbps] Acc. Decrease
None (Original) 1058 .820 N/A

AAC 64 .741 9.6 %
MP3 64 .724 11.7 %
Opus 32 .691 15.7 %

HE-AAC 32 .653 20.4 %
SBC 64 .632 22.9 %
MP3 32 .352 57.1 %
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Figure 4: Experiment A: Relationship between PEAQ ODG and
model accuracy for differently coded signals

compressed audio vs. executing complex DCASE models on a
cloud server using compressed audio.

3.1. Methodology

The 10-class FCNN sub model is retrained with different sets of
pre-compressed audio data. The workflow is shown in Figure 5.
All hyperparameters for the training are kept as in [1] to allow for
comparison across experiments. First, augmentation data are gener-
ated by converting the training dataset into different encoded audio
formats and bitrates [4]. To decide which codec configurations to
use for the training, we analysis the log-mel features across uncom-
pressed and previously compressed audio data. The aim of this anal-
ysis was to maximize the differences in the feature data via a subset
of audio codec configurations. As a result of this analysis, MP3 at
64kbps, AAC at 32kbps and HE-AAC at 16kbps and 32kbps were
selected.

The newly trained models are evaluated with the same audio
content as in Experiment A in the following conditions: First, the
original evaluation data are used to verify that the re-training has no
degrading effects on the classification of uncoded audio data. Then,
a subset of the evaluation conditions use codecs at bit rates that were
part of the training (i.e., MP3 at 64 kbps, AAC at 32 kbps), other
conditions feature the same codec used for training, but at different
bit rates (i.e., MP3 at 32 kbps, AAC at 48 and 64 kbps). In the
final two conditions, audio codecs that were not part of the model
training are applied (i.e., Opus at 64 kbps, SBC at 64 kbps).

DCASE  2020 
Development Set 

fold1 evaluate

Audio encoding

Audio decoding

Labels

DCASE  2020 
Development Set 

fold1 train

Feature extraction

Audio encoding

Audio decoding

Feature extraction

Trained Model

10-class FCNN Model Training

Inference

Evaluation

Sound Classification

Labels

Model Accuracy

Figure 5: Exp B: Model training and evaluation with coded audio

3.2. Results

The results of experiment B are summarized in the Table 3. From
the first row in Table 3 we can see that accuracy of the model when
trained with no augmentation data and evaluated with compressed
audio codecs was poor compared to the accuracy with the original
audio data. When the model was trained using the data augmenta-
tion methods as proposed in [1] (essentially our baseline), the ac-
curacy when evaluated with the original files increased moderately
from 0.703 to 0.721, but the accuracy was still comparatively lower
when evaluated with coded signals (e.g., 0.301 for MP332). Notably,
as we start including coded audio files in the training, the perfor-
mance for the codec evaluation conditions improved significantly.
With inclusion of MP3 files at 64 kbps, there was decrease in the
accuracy when evaluated with original files but the performance of
the model improved when evaluated with coded files e.g., AAC files
and MP3 files at 64 kbps. The variation of the accuracy when the
model was evaluated with different codec conditions is discussed
below:
No Coding condition: The classification performance of uncoded
audio decreased when the MP364 files were included in the training.
The performance improved gradually with inclusion of HE-AAC16

and AAC32 and further increased when the model was trained in the
final training condition (fully augmented dataset as in [1], MP364,
HE-AAC16, and AAC32). Here, the accuracy (0.72) was compara-
ble to the baseline [1], suggesting that additional data augmentation
using perceptual audio codecs does not degrade the classification of
original audio signals.
Seen Codec With Bitrate conditions (AAC32, MP364): The per-
formance increased with the baseline training from 0.458 to 0.558
and from 0.550 to 0.615 respectively. The accuracy further im-
proved with the addition of MP364, and HE-AAC. The highest



Detection and Classification of Acoustic Scenes and Events 2021 15–19 November 2021, Online

Table 3: Experiment B: Model accuracy for different training conditions evaluated with different types of previously compressed signals. The
subscript in the codec name indicates the bitrate in kbps

Training Codec for Evaluation
Index Condition File count None AAC32 MP364 MP332 AAC48 AAC64 Opus64 SBC64

1 None (only original training data) 13962 .703 .458 .550 .261 .477 .525 .587 .391
2 Fully augmented data set as in [1] 121911 .721 .558 .615 .301 .573 .622 .638 .555
3 1+MP364 27924 .668 .566 .635 .249 .602 .630 .556 .363
4 3 + HE-AAC16 41886 .696 .631 .662 .477 .638 .651 .587 .534
5 3 + HE-AAC32 41886 .699 .630 .666 .319 .648 .663 .593 .508
6 4 + AAC32 55848 .697 .673 .675 .561 .664 .671 .610 .560

7 2 + 6 163797 .720 .670 .685 .598 .685 .690 .650 .589
relative performance increase from 2 [%] -0.1 20.1 11.4 98.7 19.6 10.9 1.9 6.1

achieved accuracy for the MP364 condition was 0.685 when the
model was trained with the baseline augmentation data [1] as well
as MP364, AAC32, and HE-AAC16 as additional training data. The
highest accuracy for the AAC32 condition (0.673) was obtained
when the model was trained by including the HE-AAC16 and AAC32

training data. The relative performance for the classes AAC32 and
MP364 improved by 20.1% and 11.4% respectively, as compared to
the baseline performance.
Unseen Bitrate conditions (MP332, AAC48, AAC64): Here, the
models were trained with MP3 and AAC but evaluated at different
bitrates. Initially, the accuracy of these conditions was low: 0.261,
0.477, and 0.525 respectively. In case of the condition MP332 the
performance of the model improved with the inclusion of HE-AAC
at 16kbps and AAC at 32 kbps training data. The model accuracy
for both AAC evaluation conditions improved for every audio codec
added to the training. The relative performance of classes MP332,
AAC48, AAC64 improved by 98.7%, 19.6% and 10.9% respectively,
as compared to the baseline performance.
Unseen Codec conditions (Opus64, SBC64): Opus and SBC were
not used in training. The performance of Opus64 initially did
not improve when augmented with different coded files, but when
the model was trained with fully augmented dataset as in [1] and
MP364, HE-AAC16, and AAC32, there was a slight improvement in
the performance by 1.9%. The performance of SBC64 decreased
with inclusion of MP364 as augmentation data but improved by the
inclusion of HE-AAC16 and AAC64 as augmentation file. The rela-
tive classification accuracy for SBC64 improved by 6.1% compared
to the baseline performance.

In summary the final training condition resulted in an average
increase in classification accuracy by 24.1% across all 7 codec con-
ditions. Moreover, at the final training condition, every evaluated
codec condition achieved now at least 81% of the classification ac-
curacy as if original audio data would have been inferred. Com-
pared to the initial training method this is a significant improvement
in the robustness across codec conditions.

4. DISCUSSION AND FUTURE WORK

As a result of our experiments, we can state that perceptual com-
pression artifacts can significantly degrade the accuracy of today’s
scene classification models. Including perceptual audio coding in
the data augmentation strategy:

1. does neither harm nor improve model performance when
classification is performed on the original audio data.

2. improves model accuracy when the inferred signals have
been perceptually coded.

3. can improve model accuracy even when the inferred signals
have been perceptually coded with an unseen codec or from
a seen codec with an unseen bitrate configuration.

4. seems to better harmonize the classification accuracy for in-
put signals with unknown coding history.

Whereas we used the coding framework [4] for the sake of repro-
ducibility, results may differ when other encoder implementations
are used. Also, since we studied one recent scene classification ar-
chitecture, our results may not translate perfectly to other systems.
However, since many architectures use log-mel filterbank input fea-
tures, we believe our findings generally hold for those architectures.

Although our proposed data augmentation strategy is working,
it generally increases the training time due to the additional training
data and requires retraining of existing models. Thus, it would be
interesting to consider alternative approaches to improve robustness
against perceptual coding artifacts, e.g., hyperparameter optimiza-
tion, or transfer learning [12].

5. CONCLUSION

We demonstrated how lossy perceptual audio coding can degrade
the scene classification accuracy of a state-of-the-art system by up
to 57% compared to uncompressed audio captures, depending on
audio codec and bit rate. To increase robustness against compres-
sion artifacts, we propose a data augmentation strategy for model
training that includes perceptual audio coding. We showed that
such strategy can increases the accuracy when classifying perceptu-
ally coded signals even for audio codecs and/or bitrates not part of
the model training. These findings are beneficial to improve scene
classification robustness whenever audio signals are subject to per-
ceptual audio coding, e.g., due to transmission or lossy data storage.
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