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ABSTRACT
The IEEE-ASSP Scene Classification challenge on user-generated
content (UGC) aims to classify an audio recording that belongs to a
specific scene such as busystreet, office or supermarket. The diffi-
culty of scene content analysis on UGC lies in the lack of structure
and acoustic variability of the audio. The i-vector system is state-of-
the-art in Speaker Verification and Scene Detection, and is outper-
forming conventional Gaussian Mixture Model (GMM)-based ap-
proaches. The system compensates for undesired acoustic variabil-
ity and extracts information from the acoustic environment, making
it a meaningful choice for detection on UGC. This paper reports
our results in the challenge by using a hand-tuned i-vector system
and MFCC features. Compared to the MFCC+GMM baseline sys-
tem, our system increased the classification accuracy by 26.4% to
about 65.8%. We discuss our approach and highlight parameters in
our system that showed to significantly improved our classification
accuracy.

Index Terms— User Generated Content, Scene Detection,
Event Detection, Audio, GMM, i-vector

1. INTRODUCTION

The Audio and Multimedia Research Group of the International
Computer Science Institute in Berkeley develops and refines com-
putational algorithms, systems, and methods to handle large amount
of UGC composed of multiple types of data and meta-data, such as
videos, social media feeds, and geo-tags. We are actively involved
in content analysis projects such as Mediaeval [1], TRECVID Mul-
timedia Event (Scene) Detection (MED) [2], acoustic segmentation
[3], and room identification [4].

Scene detection has been explored by computer vision using
different features and techniques. However, audio has been under-
explored, and the state-of-the-art audio-based techniques do not
yet provide significant assistance to its video counterpart. Audio,
however, can sometimes be more descriptive than video, especially
when it comes to the descriptiveness of an event.

In the past, retrieval problems often suffered from limited train-
ing data. In contrast, UGC (such as you-tube videos) is generally
available in large scale for content analysis. UGC is also known to
be unstructured, in the sense of low-quality recordings, background-
and environmental noise, and variation of the acoustic content itself.
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The dataset provided with this IEEE-AASP Classification chal-
lenge gives us an opportunity to gain experience with a rather small
UGC dataset. It comprises 100 files, ten 30 seconds audio files for
each of the ten scenes. The audio files are binaurally captured, in-
corporating the binaural cues of three unknown heads at 44.1 kHz
and 16-bit PCM.

2. OUR SCENE DETECTION SYSTEM

Our challenge contribution employs an i-vector based system for
the audio scene detection. This approach has been previously tested
with MED data [5]. It outperformed the GMM-based system, and
was competitive with the Random Forest-based system in terms of
the Missed Detection rate at 4% and False Alarm rates at 2.8%.

2.1. The i-vector approach

The i-vector system was initially developed by Dehak et al. [6], with
an improvement made by Burget et al. [7]. The system involves
training a matrix T to model the total variability of a set of statistics
for each audio track. The statistics primarily involve the first-order
Baum-Welch statistics of the low-level acoustic feature frames (i.e.,
MFCCs) of each audio track. The Baum-Welch statistics are in turn
computed using a UBM. The Total Variability matrix T is low rank,
and is used to obtain a low-dimensional vector characterizing the
acoustic event of each audio track. Specifically, for each audio, the
vector of first-order Baum-Welch statistics M can be decomposed
as follows, given the T matrix:

M = m+ Tω + ε (1)

where m is the event-independent GMM, ω is a low - dimensional
vector, referred to as the i-vector, and ε is the residual not captured
by the terms m and Tω. The i-vector can be thought of as a low-
dimensional representation of the identity of each event class.

For the Challenge, five stratified folds were created, with 80 au-
dio files for training and 20 audio files for testing. One i-vector is
obtained for each audio file. The system performs a Within-Class
Covariance Normalization (WCCN) [8] on the i-vectors, which
whitens the covariance of the i-vectors via a linear projection ma-
trix. We followed an approach in [7], whereby a generative Prob-
abilistic Linear Discriminant Analysis (pLDA) [9] log-likelihood
ratio is used to obtain a similarity score between each test audio
and each training event class, using the i-vectors. Because there are
multiple audio samples per training event class, the i-vectors within
each class are averaged such that each class is represented by one
i-vector. The generative pLDA log-likelihood ratio for similarity
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score computation is shown below:
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where ω1 and ω2 are the two i-vectors, N(·) is the normal Gaus-
sian probability density function, Σtot and Σbc are the total and
between-class scatter matrices of the training i-vectors, prior to av-
eraging. Hence, one score is obtained for each training event class
versus test audio using the above approach. The i-vector system in-
volves several pre-trained components, such as the UBM, the T ma-
trix, the WCCN projection matrix, and the total- and between-class
scatter matrices. All such components were trained using the fold’s
corresponding training audio. The Brno University of Technology’s
JFA Matlab demo [10] is used to assist in the i-vector system de-
velopment. The open-source ALIZE toolkit [11] is used to train the
UBM.

The extracted acoustic features are the typical Mel-Frequency
Cepstral Coefficients (MFCCs) C0-C19, with delta and double
deltas, for a total of 60 dimensions, extracted using the HTK tool
[12]. Each feature frame is computing using a 25 ms window, with
10 ms frame shifts. A frequency range of 60-20000 Hz and 52 trian-
gle filter-banks were selected. Short-time Gaussian feature warping
using a three-second window [13] is used, and temporal regions
containing identical frames are removed.

2.2. Audio pre-processing

To take advantage of additional cues embedded in the binaural
recordings of this dataset, while maintaining the system’s one-
channel processing architecture, we extract from each audio files
four different monaural versions and concatenate them, resulting in
a one-channel file with a duration of two minutes. The four different
monaural versions are:

1. Left channel
2. Right channel
3. Channel difference: left channel - right channel
4. Channel average: (left channel + right channel)/2

We hope that the MFCC features extracted from these concatenated
versions will provide more useful cues to the i-vector system, com-
pared to extracting MFCCs from just one channel.

3. RESULTS

Our final system achieved an accuracy of 65.8%±4.8% (95% C.I.)
averaged across four different 5-fold stratified cross-validations us-
ing the provided training dataset. The results suggests that we could
increased the baseline accuracy by 26.4% compared to the baseline
system.

The confusion matrices from the baseline system [14] and from
our i-vector system are shown in Table 1. We choose to present the
confusion matrix from the least accurate of our four 5-fold strati-
fied CVs. A classification accuracy of 80% or better was achieved

for the scenes busystreet, openairmarket, and park. The least ac-
curate results are related to the scenes tube (40%), and tubestation
(30%). Compared to the baseline results our system has a similar or
higher accuracy in six classes. Especially for park, busystreet and
restaurant, our system achieved a higher classification score. While
the supermarket scene is the true scene most often misclassified in
the baseline system (83.3%), our system performs reasonably well
(37.5%).

bus 9 - - - - - - - 1 -
busystreet - 5 - 2 - - 1 - - 2

office - - 8 - 1 - - 1 - -
openairmarket - - - 8 - - 1 1 - -

park - - 2 1 3 3 - 1 - -
quietstreet - - - 2 2 4 - 2 - -
restaurant - - - 2 - - 3 3 - 2

supermarket 1 - 1 2 1 - 1 2 - 2
tube - - - - - - 2 - 6 2

tubestation - - - 2 - - - 2 2 4
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bus 6 - 1 2 - - 1 - - -
busystreet - 9 - - - - - - - 1

office - - 6 - 2 1 - - 1 -
openairmarket 1 - - 8 - - 1 - - -

park - - 2 - 8 - - - - -
quietstreet - 2 1 2 - 5 - - - -
restaurant - - - 1 - - 7 2 - -

supermarket 1 1 1 1 - - - 5 - 1
tube - 1 - 1 1 - - - 4 3

tubestation - 2 - 1 - 1 - 1 2 3

Table 1: Confusion matrices for baseline system (top) and our i-
vector system (bottom). Rows are ground-truth labels. In bold: the
system with the higher classification score.

4. DISCUSSION

When separating the ten scenes into indoor and outdoor1 categories
and comparing the achieved accuracy those two categories, it be-
comes clear that our system outperforms the baseline system for
outdoor scene classification. However, it also shows that our sys-
tem has difficulties with the six indoor scenes, see Figure 1. More-
over, as observable in the confusion matrix (Table 1) the indoor
recordings often gets mislabeled as the outdoor scenes busystreet or
openairmarket. This indoor-outdoor confusion must be prevented
to increase our system’s accuracy, maybe by employing additional
binaural features, such as those based on the interaural cross corre-
lation (IACC).

1Outdoor scenes: busystreet, openairmarket, park, quietstreet; Indoor
scenes: the remaining six scenes.
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Figure 1: Mean accuacy for indoor and outdoor scenes

5. CONCLUSION AND FUTURE WORK

These results show the feasibility of using an MFCC+i-vector sys-
tem for a scene classification task and significant improvements in
comparison to the conventional GMM-based system. The classifi-
cation accuracy of 80% or better was achieved for the scenes busys-
treet, openairmarket, and park, while the scene tubestation received
the least classification accuracy (30%).

To potentially improve the accuracy for those classes, addi-
tional features such as those based on the modulation spectrogram
might be beneficial and could be added to the system. Furthermore,
implicit binaural features, such as the interaural cross correlation
coefficient (IACC) could help to improve the differentiation of in-
door/outdoor characteristics.

The i-vector system provides a valid approach not only for tack-
ling the scene detection task itself, but also for handling the difficul-
ties of UGC data.
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[7] L. Burget, P. Oldřich, C. Sandro, O. Glembek, P. Matějka,
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